УДК 63 (063) ББК 4

ВЕСТНИК

Донского государственного аграрного университета

Редакционный совет

Авдеенко А.П. – д.сх.н., профессор	Миронова А.А. – д.в.н., профессор
Ахмедов Ш.Г. – к.сх.н., доцент	Назаренко О.Г. – д.б.н., профессор
Баленко Е.Г. – к. сх. н., доцент	Николаева Л.С. – д.ф.н., профессор
Бардаков А.И. – д.п.н., профессор	Новиков А.А. – д.сх.р., профессор
Бирюкова О.А. – д. сх.н., профессор	Ольгаренко В.И. – член корр. РАН
Бунчиков О.Н. – д.э.н., профессор	Ольгаренко И.В. – д.т.н., профессор
Болдырева И.А. – д.э.н., доцент	Острикова Э.Е. – д.с.х.х.н, доцент
Бородычёв В.В. – член-корр. РАН	Полозюк О.Н. – д. б.н., профессор
Волосухин В. А. – д.т.н., профессор	Приступа В.Н. – д.сх.н., профессор
Гайдук В.И. – д.э.н., профессор	Свинарев И.Ю. – д.сх.н., доцент
Дерезина Т.Н. – д.в.н., профессор	Серяков И.С. – д.сх.н., профессор
Джуха В.М. – д.э.н., профессор	Солодовников А.П. – д.сх.н., профессор
Дрововозова Т.И. – д.т.н., доцент	Соляник А.В. – д.сх.н., профессор
Дулин А.Н. – д.т.н., профессор	Сухомлинова Н.Б. – д.э.н., профессор
Забашта С.Н. – д.вет.н., доцент	Танюкевич В.В. – д.сх.н., профессор
Зеленская Г.М. – д.сх.н., профессор	Таранов М.А. – член корр. РАН
Зеленский Н.А. – д.сх.н., профессор	Твердохлебова Т.И. – д.мед.н., доцент
Каменев Р.А. – д.сх.н., профессор	Ткачев А.А. – д.тех.н., доцент
Кобулиев З.В. – академик АН РТ	Третьяк А.Я. – д.тех.н., профессор
Колосов Ю.А. – д. сх.н., профессор	Третьякова О.Л. – д.сх.н., профессор
Лаврухина И.М. – д.ф.н., профессор	Фазылов А.Р. – д. т.н., доцент
Максимов В.П. – д.т.н., профессор	Федюк В.В. – д.сх.н., профессор
Минкина Т.М. – д.б.н., профессор	Фетюхин И.В. – д.сх.н.,профессор
Миронова Л.П. – д.в.н., профессор	Черноволов В.А. – д.т.н., профессор

Редакционная коллегия

Авдеенко С.С. – к.сх.н., доцент	Козликин А.В. – к. сх. н., доцент
Воронцова Т.Н. – к.ф.н., доцент	Лунева Е.Н. – к.сх.н., доцент
Ворошилова О.Н. – к.ф.н., доцент	Мирошниченко Т.А. – к.э.н.,доцент
Гужвин С.А. – к. сх. н., доцент	Мокриевич А.Г. – к. т. н., доцент
Дегтярь А.С. – к. сх. н., доцент	Скрипин П.В. – к.т.н., доцент
Илларионова Н.Ф. – к.э.н., доцент	Тазаян А.Н. – к.в.н., доцент
	Уржумова Ю.С. – к.т.н., доцент

Журнал предназначен для ученых, преподавателей, аспирантов и студентов вузов. Все статьи размещены на сайте <u>eLIBRARY.RU</u>и проиндексированы в системе Российского индекса научного цитирования (РИНЦ).

Журнал включен в Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук

Журнал зарегистрирован в Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций - ПИ № ФС77-81570 от 3 августа 2021г.

НАУЧНЫЙ ЖУРНАЛ

Выпуск № 3 (57), 2025

Сельскохозяйственные науки

Учредитель:

федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный аграрный университет»

Главный редактор:

Федоров Владимир Христофорович

Зам. главного редактора:

Авдеенко Алексей Петрович Поломошнов Андрей Федорович

Ответственный секретарь:

Свинарев Иван Юрьевич

Выпускающий редактор:

Дегтярь Анна Сергеевна

Ответственная за английскую версию:

Мальцева Илона Анатольевна

Дизайн и верстка:

Степаненко Марина Николаевна

ISSN 2311-1968 через предприятия связи не распространяется

Адрес редакции:

ФГБОУ ВО «Донской ГАУ», 346493,ул. Кривошлыкова 24, п. Персиановский, Октябрьский (с) район, Ростовская область e-mail: dgau-web@mail.ru

SCIENTIFIC PERIODICAL

Issue No. 3 (57), 2025

Agricultural Sciencies

Establisher:

Federal State Budgetary
Educational Institution of Higher
Education «Don State Agrarian
University»

Chief editor:

Fedorov Vladimir Khristoforovich

Deputy chief editors:

Avdeenko Alexey Petrovich Polomoshnov Andrey Fedorovich

Executive secretary:

Svinarev Ivan Yuryevich

Executive editor:

Degtyar Anna Sergeevna

English version executive:

Maltseva Ilona Anatolyevna

Computer design and make-up:

Stepanenko Marina Nikolaevna

ISSN 2311-1968 through communications companies does not apply

Editorial office location:

FSBEI HE «Don SAU»
346493, Krivoshlykov Str. 24, Persianovsky,
OktyabrskyDistrict,
Rostov Region

e-mail: dgau-web@mail.ru

УДК 63 (063) ББК 4

BULLETIN

of Don State Agrarian University

Editorial Review Board

Avdeenko A.P Dr. Sc. Agr., Prof.	Mironova A.A Dr. Sc. Vet., Prof.
Akhmedov Sh.G Cand. Sc. Agr., A.P.	Nazarenko O.G Dr. Sc. Biol., Prof.
Balenko E.G Cand. Sc. Agr., A.P.	Nikolaeva L.S Dr. Sc. Phil., Prof.
Bardakov A.I Dr. Sc. Pol., Prof.	Novikov A.A Dr. Sc. Agr., Prof.
Biryukova O.A Dr. Sc. Agr., Prof.	Olgarenko V.I A.M. RAS
Bunchikov O.N Dr. Sc. Ec., Prof.	Olgarenko I.V Dr. Sc. Tech., Prof.
Boldyreva I.A Dr. Sc. Ec., A.P.	Ostrikova E.E Dr. Sc. Agr., Prof.
Borodychev V.V A.M. RAS	Polozyuk O.N Dr. Sc. Biol., Prof.
Volosukhin V.A Dr. Sc. Tech., Prof.	Pristupa V.N Dr. Sc. Agr., Prof.
Gaiduk V.I Dr. Sc. Ec., Prof.	Svinarev I.Yu Dr. Sc. Agr., A.P.
Derezina T.N Dr. Sc. Vet., Prof.	Seryakov I.S Dr. Sc. Agr., Prof.
Juha V.M Dr. Sc. Ec., Prof.	Solodovnikov A.P Dr. Sc. Agr., Prof.
Drovovozova T.I Dr. Sc. Tech., A.P.	Solyanik V.A Dr. Sc. Agr., Prof.
Dudin A.N Dr. Sc. Tech., Prof.	Sukhomlinova N.B Dr. Sc. Ec., Prof.
Zabashta S.N Dr. Sc. Vet., A.P.	Tanyukevich V.V Dr. Sc. Agr., Prof.
Zelenskaya G.M Dr. Sc. Agr., Prof.	Taranov M.A A.M. RAS
Zelensky N.A Dr. Sc. Agr., Prof.	Tverdokhlebova T.I Dr. Sc. Med., A.P.
Kamenev R.A Dr. Sc. Agr., Prof.	Tkachev A.A Dr. Sc. Tech., A.P.
Kobuliev Z.V Academician AS RT	Tretyak A.Ya Dr. Sc. Tech., Prof.
Kolosov Yu.A Dr. Sc. Agr., Prof.	Tretyakova O.L Dr. Sc. Agr., Prof.
Lavrukhina I.M Dr. Sc. Phil., Prof.	Fazylov A.R Dr. Sc. Tech., A.P.
Maximov V.P Dr. Sc. Tech., Prof.	Fedyuk V.V Dr. Sc. Agr., Prof.
Minkina T.M Dr. Sc. Biol., Prof.	Fetyukhin I.V Dr. Sc. Agr., Prof.
Mironova L.P Dr. Sc. Vet., Prof.	Chernovolov V.A Dr. Sc. Tech., Prof.

Editorial Board

Avdeenko S.SCand. Sc. Agr., A.P.	Kozlikin A.V Cand. Sc. Agr., A.P.
Vorontsova T.N Cand. Sc. Phil., A.P.	Luneva E.N Cand. Sc. Agr., A.P.
Voroshilova O.N Cand. Sc. Phil, A.P.	Miroshnichenko T.A Cand. Sc. Ec., A.P.
Guzhvin S.ACand. Sc. Agr., A.P.	Mokrievich A.GCand. Sc. Tech., A.P.
Degtyar A.S Cand. Sc. Agr., A.P.	Skripin P.VCand. Sc. Tech., A.P.
Illarionova N.FCand. Sc. Ec., A.P.	Tazayan A.NCand. Sc. Vet., A.P.
	Urzhumova Yu.S Cand. Sc. Tech., A.P.

The periodical is intended for scientists, teachers, postgraduates and university students. All research papers are hosted on the website eLIBRARY.RU and notated in the Russian Science Citation Index (RSCI) data system.

The periodical is included in the List of peer-reviewed scientific publications in which the main scientific results of dissertations for the degrees of Candidate of Science and Doctor of Science should be published

The periodical is registered byFederal_Service_for_Supervision_in_the_Sphere_of_Communications, Information_Technology_and_Mass_Communications-PP № FS77-81570 dated August 3, 2021.

СОДЕРЖАНИЕ	CONTENTS	
4.1.1 ОБЩЕЕ ЗЕМЛЕДЕЛИЕ И РАСТЕНИЕВОДСТВО	4.1.1 GENERAL AGRICULTURE AND CRO PRODUCTION	P
Кирин А.В., Зеленская Г.М., Марченко Д.М. ВЛИЯНИЕ ЛИСТОВЫХ ПОДКОРМОК ПРЕПАРАТОМ РЕЛИКТ Р НА УРОЖАЙНОСТЬ ОЗИМОЙ ПШЕНИЦЫ И КАЧЕСТВО ЗЕРНА	Kirin A.V., Zelenskaya G.M., Marchenko D.M. THE EFFECT OF FOLIAR APPLICATION WITH RELICT R ON THE YIELD AND QUALITY OF WINTER WHEAT	5
Авдеенко С.С., Авдеенко А.П. ЗНАЧЕНИЕ НЕКОРНЕВЫХ ОБРАБОТОК СТИМУЛЯТОРАМИ РОСТА В НАРАСТАНИИ НАДЗЕМНОЙ ЧАСТИ РАССАДЫ И ПОЛУЧЕНИИ ВЫСОКОГО УРОЖАЯ ГИБРИДОВ ТОМАТА	Avdeenko S.S., Avdeenko A.P. THE IMPORTANCE OF NON-ROOT TREATMENTS WITH GROWTH STIMULATORS IN THE INCREASE OF THE ABOVEGROUND PART OF SEEDLINGS AND IN OBTAINING HIGH YIELDS OF TOMATO HYBRIDS	12
4.1.3 АГРОХИМИЯ, АГРОПОЧВОВЕДЕНИЕ, ЗАЩИТА И КАРАНТИН РАСТЕНИЙ	4.1.3 AGROCHEMISTRY, AGRICULTURA SCIENCE, PLANT PROTECTION AND QUARANTINE	L
Фетюхин И.В., Абрамова Е.П., Винтовкин В.М. ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ГЕРБИЦИДОВ НА ПОСЕВАХ САХАРНОЙ СВЕКЛЫ ПРИ СМЕШАННОМ ТИПЕ ЗАСОРЕННОСТИ	Fetyukhin I.V., Abramova E.P., Vintovkin V.M. EFFICACY OF HERBICIDES ON SUGAR BEET CROPS WITH MIXED TYPE OF CLOGGING	25
Пойда В.Б., Збраилов М.А., Фалынсков Е.М. РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ СОВРЕМЕННЫХ СРЕДСТВ ЗАЩИТЫ РАСТЕНИЙ ПРИ ВЫРАЩИВАНИИ ПОДСОЛНЕЧНИКА В ПРИАЗОВСКОЙ ЗОНЕ РОСТОВСКОЙ ОБЛАСТИ	Poyda V.B., Zbrailov M.A., Falynskov E.M. RESULTS OF THE STUDY OF THE EFFICIENCY OF USING MODERN PLANT PROTECTION MEANS IN SUNFLOWER CULTIVATION IN THE AZOV ZONE OF ROSTOV REGION	31
4.2.5 РАЗВЕДЕНИЕ, СЕЛЕКЦИЯ, ГЕНЕТИКА И БИОТЕХНОЛОГИЯ ЖИВОТНЫХ	4.2.5 ANIMAL BREEDING, BREEDING, GENETICS AND BIOTECHNOLOGY	
Мункуев В.Ч., Каюкова С.Н., Викулина Н.А., Дегтярь А.С., Хорошайло Т.А., Плужников Г.Л. О СОЗДАНИИ ПЛЕМЕННОГО РЕПРОДУКТОРА ООО «ГЕРЕФОРД» ПО РАЗВЕДЕНИЮ КРУПНОГО РОГАТОГО СКОТА ГЕРЕФОРДСКОЙ ПОРОДЫ	Munkuev V.Ch., Kayukova S.N., Vikulina N.A., Degtyar A.S., Khoroshailo T.A., Pluzhnikov G.L. ON THE CREATION OF THE BREEDING REPRODUCER LLC «HEREFORD» FOR BREEDING HEREFORD BREED CATTLE	41
4.2.4 ЧАСТНАЯ ЗООТЕХНИЯ, КОРМЛЕНИЕ, ТЕХНОЛОГИИ ПРИГОТОВЛЕНИЯ КОРМОВ И ПРОИЗВОДСТВА ПРОДУКЦИИ ЖИВОТНОВОДСТВА	4.2.4 PRIVATE ANIMAL HUSBANDRY, FEED TECHNOLOGIES OF FEED PREPARATION A PRODUCTION OF ANIMAL PRODUCTS	
Козлов Е.Е., Миронова О.А. КОНФИГУРАЦИЯ ПАРАМЕТРОВ ПИТАТЕЛЬНОСТИ СУХОЙ РАСТВОРИМОЙ КОРМОВОЙ РАСТИТЕЛЬНОЙ СМЕСИ ПОСЛЕ МИКРОБИОЛОГИЧЕСКОЙ КОНВЕРСИИ	Kozlov E.E., Mironova O.A. CONFIGURATION OF NUTRITION PARAMETERS WITH DRY SOLUBLE FEED VEGETABLE MIXTURE AFTER MICROBIOLOGICAL CONVERSION	50
Козлов Е.Е., Миронова О.А. МНОГОФАКТОРНЫЙ ПРИЕМ ПРЕДУПРЕЖДЕНИЯ РОСТА УРОВНЯ АЛИМЕНТАРНЫХ РАССТРОЙСТВ КОРМОВОЙ ЭТИОЛОГИИ СРЕДИ МОЛОДНЯКА КРУПНОГО РОГАТОГО СКОТА МОЛОЧНОГО ПЕРИОДА	Kozlov E.E., Mironova O.A. MULTIFACTORIAL TECHNIQUE FOR PREVENTING THE INCREASE IN THE LEVEL OF NUTRITIONAL DISORDERS OF FEEDING ETIOLOGY AMONG YOUNG DAIRY CATTLE	58
Горлов И.Ф., Раджабов Р.Г., Гак Ю.М. СРАВНИТЕЛЬНАЯ ОЦЕНКА ВЛИЯНИЯ БЕЛКОВЫХ ДОБАВОК НА ХИМИЧЕСКИЙ СОСТАВ И КАЧЕСТВО МЯСА СВИНЕЙ	Gorlov I.F., Radzhabov R.G, Gak Yu.M. COMPARATIVE ASSESSMENT OF THE EFFECT OF PROTEIN ADDITIVES ON THE CHEMICAL COMPOSITION AND QUALITY OF PIG MEAT	66
Каратунов В.А., Кобыляцкий П.С., Каратунова Д.А ВЫРАЩИВАНИЕ РЕМОНТНЫХ ТЕЛОК ГОЛШТИНСКОЙ ПОРОДЫ	Karatunov V.A., Kobylyatsky P.S., Karatunova D.A. RAISING HOLSTEIN REPAIR HEIFERS	74

Каратунов В.А., Кобыляцкий П.С., Кирпенко А.М. ИСПОЛЬЗОВАНИЕ КОРОВ ГОЛШТИНСКОЙ ПОРОДЫ В УСЛОВИЯХ МОЛОЧНО-ТОВАРНОГО КОМПЛЕКСА УОХ «КРАСНОДАРСКОЕ»		Karatunov V.A., Kobylyatsky P.S., Kirpenko A.M. THE USE OF HOLSTEIN COWS IN THE CONDITIONS OF THE KRASNODARSKOYE DAIRY COMPLEX	83
Дегтярь А.С., Нурашев Э.Р., Левандовская А.В. ВЛИЯНИЕ ФЕРМЕНТНЫХ ДОБАВОК НА КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ ЯИЦ И МЯСНУЮ ПРОДУКТИВНОСТЬ ПЕРЕПЕЛОВ)	Degtyar A.S., Nurashev E.R., Levandovskaya A.V. THE EFFECT OF ENZYME ADDITIVES ON EGG QUALITY AND MEAT PRODUCTIVITY IN QUAIL	97
Семенченко С.В., Алексанян А.Г. ПРОДУКТИВНЫЕ КАЧЕСТВА КРОЛИКОВ ПРИ ИСПОЛЬЗОВАНИИ ПРОБИОТИЧЕСКОЙ ДОБАВКИ «ОЛИН»	1	Semenchenko S.V., Aleksanyan A.G. PRODUCTIVE QUALITIES OF RABBITS WHEN USED PROBIOTIC SUPPLEMENT "OLIN"	103
Семенченко С.В., Ежова Е.Н. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПРОДУКТИВНЫХ КАЧЕСТВ СКОТА КАЛМЫЦКО ПОРОДЫ РАЗНЫХ ЛИНИЙ		Semenchenko S.V., Yezhova E.N. COMPARATIVE CHARACTERISTICS OF PRODUCTIVE QUALITIES OF KALMYK CATTLE OF DIFFERENT LINES	111
РЕФЕРАТЫ	119	ABSTRACTS	126

УДК 633.11:631.524.7:631.582

ВЛИЯНИЕ ЛИСТОВЫХ ПОДКОРМОК ПРЕПАРАТОМ РЕЛИКТ Р НА УРОЖАЙНОСТЬ ОЗИМОЙ ПШЕНИЦЫ И КАЧЕСТВО ЗЕРНА

Кирин А.В., Зеленская Г.М., Марченко Д.М.

Аннотация: Представлены результаты по изучению влияния предпосевной обработки семян и листовой подкормки на посевах озимой пшенииы сорта Вольный Дон органоминеральным удобрением Реликт Р на урожайность и качество зерна в условиях южной зоны Ростовской области по предшественникам подсолнечник и горох, установлена корреляционная зависимость урожайности озимой пшеницы с элементами структуры. Проведение листовой подкормки на посевах озимой пшеницы привело к повышению ее урожайности на всех вариантах опыта. В среднем за три года прибавка урожайности составила от 0,18 до 0,68 т/га после гороха и от 0,09 до 0,40 т/га после подсолнечника. Наиболее эффективным по предшественнику горох были варианты с предпосевной обработкой и листовыми подкормками на посевах осенью, в период весеннего кущения и выхода в трубку (C+O+B+B) и на вариантах в фазу колошения (C+O+B+B+K), прибавка урожайности по сравнению к контролем составила 0,68 и 0,60 т/га. Урожайность озимой пшеницы по предшественнику горох в основном складывалась за счет массы зерна в колосе (r = 0.97) и количества зерен в колосе (r = 0.85), после подсолнечника урожайность зависела от массы 1000 ит (r=0.65) и массы зерна с колоса (r=0.84). Листовые подкормки органоминеральным удобрением Реликт Р на посевах озимой пшеницы повышали показатели качества зерна. На контрольном варианте содержание белка в зерне озимой пшеницы сорта Вольный Дон, после предшественника горох было 13,2 %, на посевах с применением Реликт Р белковость зерна повышалась от 13,4 до 14,1 % и наибольшей была на варианте с пятикратной обработкой. После подсолнечника содержание белка в зерне озимой пшеницы на вариантах опыта находилось в пределах от 11,8 % (контроль) до 12,8 % C + O + B + B. В зерне озимой пшеницы, изучаемых опытов с листовыми обработками, выращиваемых после подсолнечника, содержание клейковины было ниже, чем после гороха. На этих вариантах содержание клейковины в зерне варьировало от 23,7 % на варианте C+O до 25,4 % на варианте C+O+B+B+K. На вариантах после гороха содержание клейковины в зерне пшеницы было от 25,4 до 27,1 %.

Ключевые слова: озимая пшеница, листовая подкормка, урожайность, содержание белка, клейковина, стекловидность, натура зерна, корреляция.

THE EFFECT OF FOLIAR APPLICATION WITH RELICT R ON THE YIELD AND QUALITY OF WINTER WHEAT

Kirin A.V., Zelenskaya G.M., Marchenko D.M.

Abstract: The results of studying the effect of pre-sowing seed treatment and foliar application on the yield and quality of grain in the Volny Don variety of winter wheat in the southern zone of the Rostov Region, using the Relikt P organo-mineral fertilizer, have been presented. The correlation between the yield of winter wheat and the elements of its structure has been established. The use of foliar dressing on winter wheat crops led to an increase in their yield in all experimental variants. On average, the yield increase was between 0.18 and 0.68 t/ha after peas and between 0.09 and 0.40 t/ha after sunflowers. The most effective peas in terms of their predecessor were options with pre-sowing treatment and leaf feeding on crops in the fall, during the period of spring tillering and stalk-shooting (C + O + B + B) and on options in the paniculation phase (C + O + B)

+ B + K), the increase in yield compared to the control was 0.68 and 0.60 t/ha. The yield of winter wheat for the pea precursor was mainly due to the mass of grain in the ear (r = 0.97) and the number of grains in the ear (r = 0.85), after sunflower the yield depended on the mass of 1000 pieces (r = 0.65) and the mass of grain from the ear (r = 0.84). Leaf dressing with organo-mineral fertilizer Relikt R on winter wheat crops increased grain quality. In the control variant, the protein content in the grain of Volny Don winter wheat after the predecessor pea was 13.2%, while in the crops with Relikt R, the protein content increased from 13.4% to 14.1%, with the highest value in the variant with five applications. After sunflower, the protein content in winter wheat grain varied from 11.8% (control) to 12.8% in the experimental variants. In the grain of winter wheat, the studied experiments with foliar treatments, grown after sunflower, the gluten content was lower than after peas. In these variants, the gluten content in the grain varied from 23.7% in the C+O variant to 25.4% in the C+O+B+B+K variant. In the variants after peas, the gluten content in wheat grain was between 25.4% and 27.1%.

Keywords: winter wheat, foliar feeding, yield, protein content, gluten, kernel hardness, grain nature, correlation.

Актуальность: Одним из наиболее эффективных приемов в современных интенсивных технологиях возделывания зерновых культур становятся некорневые листовые подкормки специальными водорастворимыми комплексами органоминеральных удобрений [1,3,4,5]. Применение гуминовых препаратов ускоряет процесс созревания и улучшает качество сельскохозяйственной продукции за счет повышения эффективности усвоения растениями питательных веществ из минеральных удобрений [7,8,9]. Особенностью данных удобрений является способность минеральных элементов образовывать с гуминовыми соединениями органоминеральные комплексы, которые обеспечивают длительное и равномерное поступление питательных веществ в доступной для растений форме [2,6,10,]. Механизм действия гуминовых веществ заключается в стимуляции биохимических процессов в организме растения на всех этапах его развития, включая прорастание семян, формирование корневой системы, а также дальнейший рост и развитие [11].

Целью наших исследований — установить корреляционная зависимость урожайности посевов озимой пшеницы, обработанных органоминеральным удобрением Реликт Р, выращиваемых после гороха и подсолнечника, с элементами структуры урожая в условиях южной зоны Ростовской области.

Методика и схема проведения исследований

Полевые опыты проводились на полях ФГБНУ «АНЦ «Донской» Зерноградского района Ростовской области в 2021-2024 гг.

Семена и посевы озимой мягкой пшеницы Вольный Дон были обработаны препаратом Реликт Р по следующей схеме:

- 1. Контроль (без обработок)
- 2. Обработка семян (- 0,4 л/т) С
- 3. Обработка семян + листовая подкормка (осеннее кущение) 0,4 л/га. С+О
- 4. Обработка семян + листовая подкормка (осеннее кущение) 0,4 л/га. + листовая подкормка (весеннее кущение) 0,4 л/га С+О+В
- 5. Обработка семян + листовая подкормка (осеннее кущение) 0,4 л/га. + листовая подкормка (весеннее кущение) 0,4 л/га. + листовая подкормка (выход в трубку) 0,4 л/га. C+O+B+B.
- 6. Обработка семян + листовая подкормка (осеннее кущение) 0,4 л/га. + листовая подкормка (весеннее кущение) 0,4 л/га. + листовая подкормка (выход в трубку) 0,4 л/га. + листовая подкормка (колошение) 0,4 л/га C+O+B+B+K.

Метод исследований — лабораторно-полевой, повторность опыта трехкратная, площадь учетной делянки 10 м^2 . Посев озимой пшеницы проводился сеялкой Винтерштайгер PlotseedS обычным рядовым способом, с нормой высева 5,0 млн. всхожих зерен на 1 га по предшественникам подсолнечник и горох. Уборку осуществляли в фазе полной спелости

прямым комбайнированием комбайном Wintersteiger Classik. Обработка полученных данных выполнялась с использованием программ Microsoft Excel и Statistica 10. Условия выращивания озимой пшеницы в период вегетации по годам исследований были неодинаковыми, гидротермический коэффициент (ГТК), характеризующий влагообеспеченность соответственно по годам исследований составил 0,71; 0,90; 0,68.

Результаты и обсуждения: Урожайность полевых культур зависит от многих факторов, включая климатические условия, качество почвы, применяемых агротехнических методы, сорта, наличия удобрений и защиты от вредителей и болезней.

Наши исследования доказывают, что применение листовой подкормки посевов озимой пшеницы повышало урожайность практически на всех вариантах опыта. В среднем за три года прибавка урожайности составила от 0,18 до 0,68 т/га после гороха и от 0,09 до 0,40 т/га после подсолнечника (табл.1).

Сроки применения Реликт Р по фазам вегетации не одинаково влияли на продуктивность посевов озимой пшеницы, наиболее эффективным вариантами по предшественнику горох были: C+O+B+B и C+O+B+B+K, прибавка урожайности по отношению к контрольному варианту составила 0,68 и 0,60 т/га. После подсолнечника на варианте C+O+B+B прибавка по сравнению с контролем составила 0,40 т/га.

Урожайность озимой пшеницы после гороха в основном складывалась за счет массы зерна в колосе (r = 0.97) и количества зерен в колосе (r = 0.85), на вариантах после подсолнечника она больше зависела от массы 1000 шт (r = 0.65) и массы зерна в колосе (r = 0.84) (рис.1).

Показатели качества зерна при комплексном использования листовых подкормок на посевах зерновых являются одним из основных показателей при его производстве.

Таблица 1 - Роль листовых подкормок органоминеральным удобрением Реликт Р на урожайность озимой пшеницы по предшественникам (среднее за 2022-2024 гг.)

урожайность озимой пшеницы по предшественникам (среднее за 2022-2024 11.)									
		предшественник							
Ромионт онито	горох			нечник					
Вариант опыта	урожайность, т/га	± к контролю, т/га	урожайность, т/га	\pm к контролю, т/га					
Контроль	8,77	-	6,28						
С	8,95	0,18	6,37	0,09					
C+O	9,13	0,36	6,37	0,09					
C+O+B	9,14	0,37	6,65	0,37					
C+O+B+B	9,45	0,68	6,68	0,40					
C+O+B+B+K	9,37	0,60	6,66	0,38					
HCP05	0,59	-	0,39	-					

На контрольном варианте озимой пшеницы, выращиваемой после гороха, в среднем за три содержание белка в зерне составило 13,23 %, на посевах с применением Реликт Р этот показатель варьировал от 13,41 до 14,05 % и наибольшим был на варианте C+O+B+B+K. Содержание белка в зерне озимой пшеницы в изучаемых вариантах опыта после подсолнечника находилось в пределах 11,8 % (контроль) до 12,8 % C+O+B+B (рис. 2).

В зерне озимой пшеницы, изучаемых опытов с листовыми обработками, выращиваемых после подсолнечника, содержание клейковины было ниже, чем после гороха. На этих вариантах содержание клейковины в зерне варьировало от 23,7 % у C+O до 25,4 % у C+O+B+B+K. На вариантах после гороха содержание клейковины в зерне пшеницы было от 25,4 до 27,1 % (рис.2).

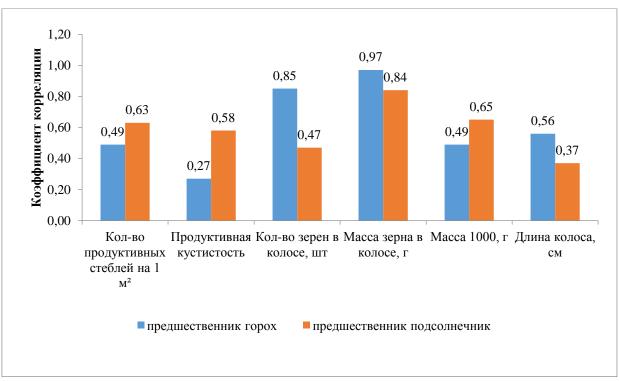


Рисунок 1 - Корреляционные взаимосвязи урожайности с элементами структуры урожая опыта с листовой подкормкой по различным предшественникам (среднее за 2022-2024 гг).

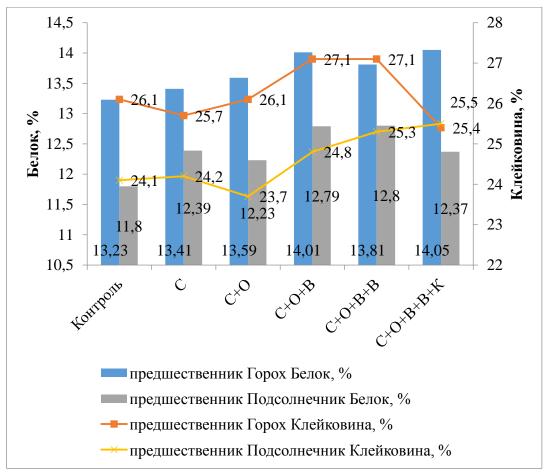


Рисунок 2 — Влияние листовых подкормок Реликт Р на содержание белка и клейковины в зерне озимой мягкой пшеницы по предшественникам (среднее за 2022-2024 гг).

Процент стекловидности в зерне пшеницы с листовыми подкормками органоминеральным удобрением Реликт Р (рис.3) по предшественнику горох варьировал от 68% (контроль) до 72% (С+О+В+В и С+О+В+В+К). В зерне, выращенном по предшественнику подсолнечник показания по стекловидности изменялись 61% (контроль) до 66% (С+О+В+В и С+О+В+В+К). Можно сделать вывод что максимальное содержание стекловидности было получено по обоим предшественникам на вариантах с применением листовых подкормок Реликт Р (С+О+В+В и С+О+В+В+К).

По показателю натура, зерно первого класса было сформировано всеми вариантами опыта, по обоим предшественникам. Варьирование данного признака по предшественнику горох составило от 800 г/л контрольный вариант до 812 г/л на варианте опыта C+O+B. После подсолнечника натура зерна была меньше и находилась в пределах от: 768 г/л контрольный вариант до 805 г/л на варианте C+O+B+B (рис.3).

Содержание крахмала в зерне пшеницы по предшественнику горох изменялось 56,2% (контроль) до 66,5% C+O+B+B+K, после подсолнечника этот показатель был ниже - 50,9 - 53,1%.

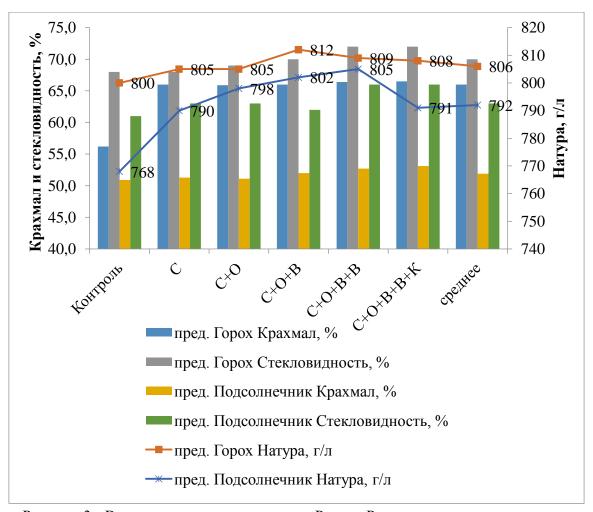


Рисунок 3 - Влияние листовых подкормок Реликт Р на показатели качества зерна озимой мягкой пшеницы по предшественникам (среднее 2022-2024гг.)

Выводы: Таким образом, в результате проведенных исследований нами установлено что применение органоминерального удобрения Реликт способствует повышению урожайности озимой пшеницы в условиях южной зоны Ростовской области на предшественниках горох и подсолнечник. Максимальная прибавка по урожайности была получена по предшественнику горох на вариантах C+O+B+B и C+O+B+B+K и составила 0,6-0,68 т/га. Прибавки, полученные по предшественнику подсолнечник оказались меньше по сравнению с

прибавками полученными по предшественнику горох. Максимальная прибавка по урожайности по предшественнику подсолнечник была получена на варианте опыта C+O+B+B+K и составила 0,45 т/га.

Сбалансированный комплекс макро-, мезо и микроэлементов, входящий в состав органоминерального удобрения Реликт Р, позволяет растениям озимой мягкой пшеницы снизить уровень воздействия неблагоприятных почвенно-климатических условий в течении вегетации, а также стресс факторов, таких как холодный и засушливый период.

Список литературы

- 1. Алексашина О.В. Повышение урожайности и качества пшеницы озимой на основе применения современных биологических веществ / О.В. Алексашкина, Д.А. Редькин // Защита растений в условиях экологизации сельскохозяйственного производства : матер. междунар. науч.-практ. конф. студентов, аспирантов, молодых ученых и специалистов. Орел, 2018. С. 22–27
- 2. Афанасьев Р. А. Эффективность некорневых подкормок озимой пшеницы в условиях ЦЧЗ / Р. А. Афанасьев, А. С. Самотоенко, А. А. Галицкий // Плодородие. № 4 (55). 2010. С. 13-15.
- 3. Григорьева, Е.В. О гуминовых препаратах / Е. Григорьева // International Agricultural Journal. 2020. Т. 63, № 5. С. 4.
- 4. Зеленская Г.М. Продуктивность и качество озимой пшеницы в зависимости от предшественника и применения микроудобрений в условиях южной зоны Ростовской области // Зеленская Г.М., Кирин А.В., Марченко Д.М. // В сборнике: Актуальные проблемы использования почвенных ресурсов и пути оптимизации антропогенного воздействия на агроценозы: цифровизация, экологизация, основы органического земледелия. материалы международной научно-практической конференции. Персиановский, 2023. С. 80-84.
- 5. Кирин А.В. Формирование урожайности и элементов структуры сортов озимой мягкой пшеницы по предшественнику горох в условиях ФГБНУ «АНЦ «Донской» // Кирин А.В., Марченко Д.М., Иванисов М.М., Рыбась И.А., Зеленская Г.М. // Зерновое хозяйство России. 2024. Т. 16. № 3. С. 33-39.
- 6. Кирин А.В. Изучение урожайности и элементов структуры новых сортов озимой мягкой пшеницы селекции «АНЦ «Донской» по предшественнику подсолнечник // Кирин А.В., Марченко Д.М., Иванисов М.М., Рыбась И.А., Зеленская Г.М. // Зерновое хозяйство России. 2025. Т. 17. 1. С. 82-88.
- 7. Лыкова Н.А. Использование гуминовых препаратов в быстром экологическом испытании зерновых культур //Материалы Всероссийской конференции «Гуминовые вещества в биосфере», 2003- http://humus.msu.ru
- 8. Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации М.: МГУ, 1990.-325с.
- 9. Перминова И.В. Гуминовые вещества в контексте зеленой химии / Зеленая химия в России.// Перминова И.В., Жилин Д.М. М.: изд-во МГУ, 2000. С. 146-162.
- 10. Пономарева А.С. Продуктивность и качество пшеницы при внесении органоминеральных удобрений с комплексом аминокислот// Пономарева А.С., Коршунов А.А., Вознесенская Т.Ю. //Плодородие. 2019. № 5. С.13-16.
- 11. Полиенко, Е. А. Влияние гуминовых удобрений различной природы на биологическую активность и плодородие чернозема обыкновенного карбонатного / Е. А. Полиенко // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2011. № 4(164). -С. 73-76.

References

1. Aleksashina, O.V. Increasing the yield and quality of winter wheat through the use of modern biological substances/O.V. Aleksashina, D.A.Redkin // Plant protection in the context of greening

- agricultural production: Proceedings of the international scientific and practical conference of students, graduate students, young scientists and specialists. Orel, 2018. Pp. 22–27
- 2. Afanasyev, R.A. Efficiency of foliar feeding of winter wheat in the conditions of the Central Chernozem Region/ R.A. Afanasyev, A.S.Samotoyenko, A.A.Galitsky// Fertility. No. 4 (55). 2010. Pp. 13–15.
- 3. Grigorieva, E.V. On humic preparations/ E.V. Grigorieva // International Agricultural Journal. 2020. Vol. 63, No. 5. P. 4.
- 4. Zelenskaya G.M. Productivity and quality of winter wheat depending on the predecessor and the use of microfertilizers in the southern zone of the Rostov region // Zelenskaya G.M., Kirin A.V., Marchenko D.M. // In the collection: Actual problems of soil resources use and ways to optimize anthropogenic impact on agrocenoses: digitalization, greening, fundamentals of organic farming. Proceedings of the International Scientific and Practical Conference, Persianovsky, 2023. pp. 80-84.
- 5. Kirin A.V. Formation of yield and structural elements of winter soft wheat varieties based on pea as a predecessor in the conditions of the Federal State Budgetary Scientific Institution "Antical Scientific Center "Donskoy" // Kirin A.V., Marchenko D.M., Ivanisov M.M., Rybas I.A., Zelenskaya G.M. // Grain Economy of Russia. 2024. Vol. 16. No.3. pp. 33-39.
- 6. Kirin AV Study of yield and structural elements of new varieties of winter soft wheat bred by the Donskoy Scientific Research Center using sunflower as a predecessor // Kirin AV, Marchenko DM, Ivanisov MM, Rybas IA, Zelenskaya GM // Grain Economy of Russia. 2025. Vol. 17. 1. pp. 82-88.
- 7. Lykova N.A. Use of humic preparations in rapid environmental testing of grain crops // Proceedings of the All-Russian Conference "Humic Substances in the Biosphere", 2003 http://humus.msu.ru
- 8. Orlov D.S. Humic acids of soils and the general theory of humification. M.: Moscow State University, 1990. P.325.
- 9. Perminova I.V. Humic substances in the context of green chemistry / Green chemistry in Russia.// Perminova I.V., Zhilin D.M. M.: Moscow State University Press, 2000. pp. 146-162.
- 10. Ponomareva A.S. Productivity and quality of wheat with the application of organomineral fertilizers with a complex of amino acids // Ponomareva A.S., Korshunov A.A., Voznesenskaya T.Yu. // Fertility. 2019. No. 5. pp. 13-16.
- 11. Polienko, E. A. Influence of humic fertilizers of various nature on the biological activity and fertility of ordinary carbonate chernozem / E. A. Polienko // News of higher educational institutions. North Caucasus region. Series: Natural sciences. 2011. No. 4(164). pp. 73-76.

Информация об авторах

Кирин Александр Валерьевич, ФГБНУ Аграрный Научный Центр «Донской», младший научный сотрудник лаборатории селекции и семеноводства озимой мягкой пшеницы полуинтенсивного типа, sasha.kirin2015@yandex.ru;

Марченко Дмитрий Михайлович, ФГБНУ Аграрный Научный Центр «Донской», кандидат сельскохозяйственных наук, ведущий научный сотрудник лаборатории селекции и семеноводства озимой мягкой пшеницы полуинтенсивного типа, wiza101@mail.ru;

Information about the authors

Kirin Alexander Valerievich, Junior Researcher at the Laboratory of breeding and seed production of semi-intensive winter soft wheat, sasha.kirin2015@yandex.ru;

Marchenko Dmitry Mikhailovich, Candidate of Agricultural Sciences, leading researcher at the laboratory of breeding and seed production of semi-intensive winter soft wheat, wiza101@mail.ru; **Zelenskaya Galina Mikhailovna** - Doctor of Agricultural Sciences, Professor of the Department of Crop Production and Horticulture, Don State Agrarian University, E-mail: zela 06@mail.ru.

ЗНАЧЕНИЕ НЕКОРНЕВЫХ ОБРАБОТОК СТИМУЛЯТОРАМИ РОСТА В НАРАСТАНИИ НАДЗЕМНОЙ ЧАСТИ РАССАДЫ И ПОЛУЧЕНИИ ВЫСОКОГО УРОЖАЯ ГИБРИДОВ ТОМАТА

Авдеенко С.С., Авдеенко А.П.

Аннотация: В статье дается подробный анализ действия обработки стимуляторами роста подкормок стимуляторами роста биологической природы на параметры развития рассады гибридов томата открытого грунта Государь и Донской, а также среднюю массу плодов и показатели ранней и обшей урожайности. Установлено положительное влияние примененных биостмуляторов на высоту рассады гибридов Государь и Донской с минимальной и при этом не подтвержденной математически разницей между собой. Действие препаратов можно разделить фактически на 2 группы, включающие по 5 препаратов. 1 группа объединяет препараты: Байкал ЭМ 1, Биосил, Оберегь, Эпин-экстра, Альбит, высота рассады которых достигает 26,0 см, а площадь листовой поверхности 132,4 см². Вторая группа имеет высоту растений от 26,1 до 27,0 см, а максимальная плошадь листовой поверхности не превышает 155 см² и, она объединяет препараты: Гумат калия, Вигор форте, Фосфатовит, Изабион и Экстрасол. Применяемые для некорневых обработок стимуляторы роста способствуют увеличению средней массы плодов, с большим эффектом по препаратам Фосфатовит и Изабион по обоим гибридам, однако масса плодов гибрида Донской по этим вариантам больше на 15-17 г. По обоим гибридам наиболее сильный эффект в увеличении величины урожая показали препараты Гумат калия, Вигор форте, Фосфатовит, Изабион и Экстрасол в порядке увеличения показателя. Хотя выделился у обоих гибридов препарат Экстрасол, как самый продуктивный, при этом разница с препаратами Изабион и Фосфатовит не подтверждается математической обработкой. Однако есть и определенные особенности. Первая – реакция растений не только на применяемые препараты, но и на климатические условия года – так 2025 г был менее урожайный в сравнении с 2024 г.

Ключевые слова: стимуляторы роста, площадь листовой поверхности, некорневые обработки, гибрид, томат, урожайность.

THE IMPORTANCE OF NON-ROOT TREATMENTS WITH GROWTH STIMULATORS IN THE INCREASE OF THE ABOVEGROUND PART OF SEEDLINGS AND IN OBTAINING HIGH YIELDS OF TOMATO HYBRIDS

Avdeenko S.S., Avdeenko A.P.

Abstract: The article provides a detailed analysis of the effects of growth stimulator treatments of biological nature on the development parameters of seedlings of the open-field tomato hybrids Gospodar and Donskoy, as well as the average fruit weight and indicators of early and total yield. A positive influence of the applied biostimulants on the height of seedlings of the Gospodar and Donskoy hybrids was established, with minimal and statistically unconfirmed differences between them. The action of the preparations can be practically divided into 2 groups, each including 5 preparations. The first group includes the preparations: Baikal EM-1, Biosil, Obereg, Epin-extra, Albite, whose seedling height reaches 26.0 cm, with a leaf area of 132.4 cm². The second group has plant heights ranging from 26.1 to 27.0 cm, with a maximum leaf area not exceeding 155 cm², and it includes the preparations: Potassium Humate, Vigor Forte, Phosphatovit, Isabion, and Extrasol. The growth stimulants used for foliar treatments contribute to an increase in the average fruit mass, with a greater effect observed with the Phosphatovit and Izabion preparations for both hybrids; however, the fruit mass of the Donskoy hybrid is higher by 15-17 g with these options. For both

hybrids, the strongest effect in increasing yield was shown by the potassium humate, Vigor Forte, Phosphatovit, Izabion, and Extrasol preparations, in the order of increasing effect. Although the Extrasol preparation stood out for both hybrids as the most productive, the difference from Izabion and Phosphatovit is not supported by statistical analysis. However, there are certain specifics. First, the plants' response depends not only on the applied preparations but also on the climatic conditions of the year – for example, 2025 was less productive compared to 2024.

Keywords: growth stimulants, leaf area, foliar treatments, hybrid, tomato, yield.

Введение. Овощеводство открытого грунта традиционно одна из подотраслей растениеводства, которая считается особенно рискованной из-за действия комплекса неблагоприятных факторов внешней среды, что сильно усложняет производство, увеличивает стоимость продукции и не позволяет производителям окупать понесенные затраты. Это в сильной степени уже повлияло на посевные площади овощных культур, привело к их резкому сокращению и переходу производства отдельных культур в мелкотоварное производство.

Решить проблему в какой-то степени помогает обеспечение хороших условий роста, для степных районов с усиливающейся аридностью климата это обеспечение дополнительного орошения, тем более, что овощи отлично отзываются на данный прием, однако он достаточно дорогостоящий и не гарантированный на любой территории. В практике растениеводства для этого существуют и другие приемы, причем достаточно простые. В основном они базируются на знании физиологической реакции растений на изменение условий питания.

Одно из перспективных направлений повышения урожайности - применение стимуляторов роста. Разнообразие эффектов, вызываемых регуляторами роста растений, с одной стороны, усложняет их использование, но с другой - дает возможности для всё большего управляющего воздействия на растения. Поэтому роль регуляторов роста растений в с.-х. производстве будет расти. Сосредоточение исследований на отдельных культурах (зерновые, картофель и т.д.) уже привело к повышению их устойчивости к неблагоприятным факторам среды и болезням. Основное внимание уделялось хозяйственно ценной части растений и применение регуляторов роста для её усовершенствования сулит большие перспективы [1].

Как видим изучение действия стимуляторов роста началось достаточно давно и охватывает разнообразные культуры. Важной характерной особенностью современного сельскохозяйственного производства является значительное расширение видового состава стимуляторов роста, причем, изменилось и их происхождение. Если 15-20 лет назад эту нишу занимали в основном стимуляторы роста с чисто химическим составом, то сейчас, в том числе основываясь как на проведенных за этот период исследованиях, так и на современных потребностях ранка экологически безопасных, в том числе органических продуктов, состав стимуляторов резко расширился за счет появления на рынке как чисто стимуляторов, но при этом полученных на биологической основе, так и большого спектра биоорганических микроудобрений, которые в малых количествах используются как стимуляторы роста.

Сочетание улучшенного усвоения питательных веществ и повышенной толерантности к стрессовым факторам, возникающих при применении биостимуляторов, может улучшить как качество продукции, так и урожайность и, таким образом, принести экономические выгоды, особенно для фермеров. Наиболее известными компонентами, рассматриваемыми в качестве биостимуляторов, являются минеральные элементы, витамины, аминокислоты, поли- и олигосахариды, природные растительные гормоны. По прошествии многих лет было создано несколько категорий биостимуляторов на основе их основного компонента или механизма действия [2, 3].

Большое внимание при изучении действия различных стимуляторов отводится всесторонней оценке реакции растений на различных этапах жизнедеятельности, буквально

начиная с прорастания семян (можно оценивать, например подготовку семян к посеву) и заканчивая сбором продукции, оценкой ее качества и возможной оценки ее сохранности (например, оценивать убыль массы) с учетом местных почвенно-климатических факторов и реально складывающихся погодных условий.

Наш университет на протяжении многих лет активно занимается исследованиями в данном направлении, которые охватывают как традиционные полевые (зерновые, технические и др. культуры), так и большой спектр овощных культур открытого и защищенного грунта, а также декоративных культур и винограда. Активно работают в этом направлении — Фетюхин И.В., Авдеенко А.П., Рябцева Н.А., Огнев В.В., Турчин В.В., Авдеенко С.С., Громаков А.А., Каменев Р.А. и др. сотрудники [4-22]. Основные результаты их исследований убедительно доказывают разноплановый эффект от применения стимуляторов роста, подчеркивая при этом чуть более высокий эффект от препаратов биологического происхождения.

Основываясь на обширном анализе литературных источников, считаем, что исследования, проведенные нами в условиях открытого грунта Ростовской области вполне актуальны, новизна их не вызывает сомнения.

Актуальность и новизна исследований. Впервые проведено исследование обширной группы стимуляторов роста биологической природы в условиях приазовской зоны Ростовской области на 2 гибридах современного типа томата — Государь и Донской с высоким потенциалом урожая. Изученные биостимуляторы хотя и не все новы в производстве, однако отличаются невысокой ценой и добавленной себестоимостью, а их биологическая природа гарантирует получение безопасной для потребления продукции. Данных о реакции изученных гибридов на некорневое применение биостимуляторов в 2 этапа (а рассадный период и на постоянном месте в открытом грунте) в открытых источниках нами не найдено, что и обуславливает актуальность и новизну исследований.

Цель и задачи исследования. Цель исследований - дать оценку влияния стимуляторов роста биологической природы на гибридах томата Государь Донской

Задачи исследований: провести наблюдения за реакцией растений двух, выращиваемых в хозяйстве гибридов на применяемые стимуляторы роста, оценить их действие на морфометрические показатели, продуктивность гибридов в условиях приазовской зоны Ростовской области.

Условия, материалы и методы исследований. Исследования проводили в 2024-2024 гг. в открытом грунте на территории сл. Красюковской Октябрьского района Ростовской области в 2 этапа: 1 этап: 2-х кратное опрыскивание рассады растворами изучаемых препаратов в теплице: 1 раз - в фазу 1-2 настоящих листа; 2 раз - через две недели; 2 этап: опрыскивание растений в открытом грунте 2-х кратно с интервалом 15-20 дней на делянках со следующими размерами: посевных - 5 м², учетных - 3 м². Повторность опыта четырехкратная. Расположение делянок рендомизированное. Опыты проведены на базе ССЦ «Ростовский», расположенном в Октябрьском районе Ростовской области, почвы которого представлены черноземом обыкновенным теплым, который характеризуется уровнем РН 6-9-7,2 и достаточно высоким содержанием основных питательных веществ.

Результаты исследования. Одним из главных условий получения высокого урожая плодов томата хорошего качества помимо выбора сорта (гибрида) является обеспечение условиями жизнедеятельности растений период вегетации ПО возможности приближенными к оптимальным. Однако, в условиях нарастания аридности климата Юга России это становится практически невыполнимой задачей, особенно для средне- и позднеспелой группы гибридов (сортов). Если раньше их производство было в основном безрассадным, то сейчас оно практически полностью переориентировалось на рассадную технологию на орошении, хотя бы минимальном, более затратную с одной стороны, но с другой стороны гарантирующую достаточно высокие урожаи. В этих условиях возрастает и значение производства более дешевой рассады, с минимальными затратами, здоровой и, соответственно в дальнейшем гарантирующей урожай, вполне окупающий затраты.

При этом, здоровье рассады, также как и ее качество можно активизировать, что в основном достигается как выводом семени из состояния покоя на этапе подготовки, так и регулировкой процесса роста и развития всех частей растений с помощью стимуляторов роста, что значительно ускоряют рост рассады. Дополнительным эффектом использования стимуляторов является снижение вредного воздействия внешних факторов. Среди этих факторов в области основными являются серьезный недостаток естественных осадков, которых с каждым годом становится все меньше и крайне нестабильные температуры (причем как высокие, так и низкие, в том числе отрицательные). Особое значение имеет применение стимуляторов натурального происхождения, которые помимо всех прочих эффектов позволяют сократить количество минеральных подкормок, а конкретно для томатов; повысить качество и количество завязи и плодов.

В ходе исследований было установлено, что изучаемые стимуляторы роста биологической природы оказывали существенное влияние на формирование биометрических показателей рассады томата (табл. 1). Однако, существенной разницы в действии стимуляторов по гибридам в биометрических показателях не наблюдалось, поэтому в таблице 1 приведены данные в среднем по гибридам Государь и Донской.

При оценке биометрических показателей рассады к моменту высадки в грунт определено положительное действие стимуляторов в опытных вариантах. Несмотря на то, что к этому времени они были применены только 2 раза.

Примененные препараты по всем вариантам увеличили диаметр стебля, однако не все увеличили количество листьев, а только частично, при этом это была большая часть вариантов – семь из 10 вариантов опыта. Увеличение количества листьев при некорневой обработке рассады способствовало закономерному увеличению как высоты растений, так и площади листовой поверхности 1 растения.

Определение высоты растений и площади листовой поверхности показало, что минимальную их прибавку в сравнении с контролем гарантировал препарат Байкал 3M1-0.5 см высоты и $7.1~{\rm cm}^2$ площади. С одной стороны – это минимальные прибавки, с другой стороны переросшая рассада не обеспечивает высокого процента приживаемости в открытом грунте.

По остальным опытным высота рассады варьировала от 24,7 см с применением Биосила до 27,0 см с применением Экстрасола. Разница в пределах ошибки опыта в этом показателе отмечена по вариантам с Фосфатовитом и Вигором форте, а вот разница с Гуматом калия в 0,3 см, хотя и незначительна, но уже достоверна. Также незначительна достоверная разница между действием Экстрасола и Изабиона.

Таблица 1 - Биометрические показатели рассады томата при применении стимуляторов роста (среднее 2024-2025 гг.) (среднее по гибридам Государь и Донской)

Вариант	Высота	Количество	Диаметр	Площадь листовой поверхности 1
	растений, см	листьев, шт.	стебля, мм	растения, см ²
Контроль	23,1	7	4	92,1
Вигор Форте	26,3	8	5	146,7
Эпин-экстра	25,2	8	5	120,1
Биосил	24,7	7	5	104,9
Байкал -ЭМ1	23,6	7	5	99,2
Альбит	26,0	8	5	132,4
Изабион,	26,8	8	5	151,8
Гумат калия	26,1	8	5	142,0
Фосфатовит	26,4	8	5	150,3
Экстрасол	27,0	8	5	154,8
Оберегъ	25,1	7	5	114,0
HCP ₀₅	0,18			3,7

Площадь поверхности листьев - важный показатель качества рассады была тесно связана с используемыми препаратами. Всего 1 вариант опыта, кроме контрольного – с применением Байкала ЭМ1 сформировал растения с площадью листовой поверхности менее $100,0\,\,\mathrm{cm}^2$. Стимулятор Экстрасол увеличил этот показатель до максимального в опыте показателя $154,8\,\,\mathrm{cm}^2$.

Действие препаратов можно разделить фактически на 2 группы. 1 группа объединяет препараты: Байкал ЭМ 1, Биосил, Оберегъ, Эпин-экстра, Альбит, высота рассады которых достигает 26,0 см, а площадь листовой поверхности 132,4 см². Вторая группа имеет высоту растений от 26,1 до 27,0 см, а максимальная площадь листовой поверхности не превышает 155 см² и, она объединяет препараты: Гумат калия, Вигор форте, Фосфатовит, Изабион и Экстрасол. Как видим обе группы объединят по 5 изучаемых препаратов.

Проведенные обработки стимуляторами роста биологической природы позволили увеличить среднюю массу плодов со 120-125 г по гибридам в контроле (рис. 1).

Анализ рисунка 1 показывает, что действие стимуляторов роста по гибридам проявляется несколько по-разному и в некотором смысле связано с особенностями. Например, в контроле средняя масса гибрида Донской на 5 г больше гибрида Государь. По всем опытным вариантам также средняя масса плодов также больше у гибрида Донской, при этом морфологические признаки, такие как форма, окрас и камерность плодов остались неизменными.

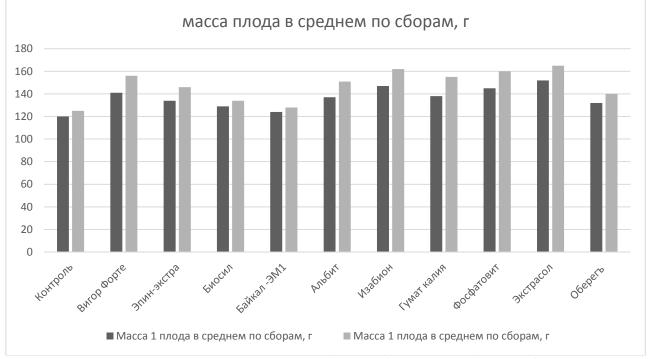


Рисунок 1 - Масса плода в среднем по сборам, г (среднее 2024-2025 гг.)

В вариантах с применением стимуляторов роста мы видим следующую картину. Наименьший эффект отмечается с прибавкой к контролю при применении Байкала-ЭМ1, причем, что не совсем объяснимо – прибавка массы у гибрида Государь больше на 1 г, чем у гибрида Донской (хотя возможно такая разница в пределах ошибки опыта). Также интересна картина по действию препарата Биосил – он абсолютно одинаков по обоим гибридам. По остальным опытным вариантам действие проявляется с положительной динамикой по гибриду Государь интервал достаточно большой – от +12 г по препарату Оберегъ до 32 г. по препарату Экстрасол. Достаточно выравненную реакцию гибрид Государь показал на препараты Фосфатовит и Изабион – прибавка 20,1-22,5%. По гибриду Донской реакция на применение препаратов примерно одинакова, однако с некоторыми особенностями. Так, прибавка массы плода после препаратов с минимальными показателями (Байкал ЭМ1 и Биосил) распределилась в интервале от 15 г до 40 г с по тем же вариантам. При этом

максимальные прибавки в массе плода имеют те же варианты, однако с большим эффектом – 28,0-29,6%.

Таким образом, применяемые для некорневых обработок стимуляторы роста способствуют увеличению средней массы плодов, с большим эффектом по препаратам Фосфатовит и Изабион по обоим гибридам, однако масса плодов гибрида Донской по этим вариантам больше на 15-17 г.

Прибавка средней массы плодов по вариантам с применением стимуляторов роста позволяет говорить и о более высокой продуктивности в опытных вариантах (таблицы 2 и 3).

Важной особенностью гибридов является хорошая адаптация к условиям выращивания. Так, несмотря на неблагоприятные погодные условия обоих годов исследований нами получен достаточно высокий для открытого грунта урожай как ранней, так и общей продукции, хотя такой урожай не в полной мере отражает генетические возможности данных гибридов.

Как видно из данных таблиц 2 и 3 урожай плодов и ранний и, общий был меньше у 2025 году, что было непосредственно связано с погодными условиями. Так, практически полное отсутствие осадков в течение летних месяцев (особенно июль-август), когда растения формируют основную массу продукции, несмотря на дополнительное орошение в этот период, привело к получению по всем вариантам опыта у обоих изученных гибридов более низкой урожайности именно в 2025 г. То есть дополнительный полив не в полной мере обеспечивает потребности растений в воде для формирования урожая и не может заменить естественные осадки, особенно летнего периода.

Таблица 2 - Ранняя и общая урожайность гибрида Государь при применении стимуляторов роста, т/га

Варианты	Урожайно	сть плодов	одов Урожайность I		В среднем за	При	бавка
	рання	я, т/га	плодов с	общая,	два года	ypo	жая ±
			T/F	a	(общая), т/га		
	2024 г	2025 г	2024 г	2025 г		т/га	%
Контроль	15,7	15,4	76,8	71,9	74,35	-	-
Вигор Форте	18,4	17,6	85,5	79,3	82,40	8,05	10,8
Эпин-экстра	17,8	17,2	84,5	77,8	81,15	6,80	9,1
Биосил	17,4	16,6	82,1	75,6	78,85	4,50	6,0
Байкал -ЭМ1	16,5	16,0	80,1	74,9	77,50	3,15	4,2
Альбит	17,9	17,3	84,8	78,6	81,70	7,35	9,9
Изабион,	18,8	17,8	86,2	80,4	83,30	8,95	12,0
Гумат калия	18,1	17,5	85,1	78,9	82,00	7,65	10,3
Фосфатовит	18,4	17,6	85,7	79,5	82,60	8,25	11,1
Экстрасол	19,1	18,1	87,0	81,4	84,20	9,85	13,2
Оберегъ	17,1	16,9	82,8	76,4	79,60	5,25	7,1
НСР ₀₅ т/га			1,12	0,10			

По гибриду Донской в разрезе опытных вариантов мы видим следующее — урожай в опыте в среднем за два года варьировал от 81,35 т/га в контроле 91,55 т/га при применении Экстрасола, что обеспечило достоверную прибавку чуть более 10 т/га, что больше прибавки гибрида Государь (НСР $_{05}$ по годам — 1,10-0,98 т/га). Также уступает ему по действию в прибавке, но только на 0,25 т/га препарат Изабион.

Наметившаяся тенденция разделения действия препаратов на 2 группы, которую мы выделили при оценке параметров роста рассады и продолжили наблюдать по гибриду Государь также присутствует, но до 10% прибавку в контролю обеспечивают только 4 препарата, а еще 6 препаратов показали прибавку урожая более 10% и к ним практически в том же порядке нарастания добавился — Альбит, Гумат калия, Вигор форте, Фосфатовит,

Изабион и Экстрасол.

По гибриду Донской в разрезе опытных вариантов мы видим следующее — урожай в опыте в среднем за два года варьировал от 81,35 т/га в контроле 91,55 т/га при применении Экстрасола, что обеспечило достоверную прибавку чуть более 10 т/га, что больше прибавки гибрида Государь (НСР $_{05}$ по годам — 1,10-0,98 т/га). Также уступает ему по действию в прибавке, но только на 0,25 т/га препарат Изабион.

Таблица 3 - Ранняя и общая урожайность гибрида Донской при применении стимуляторов роста, т/га

Варианты	Урожайность плодов		Урожай	Урожайность		Прибавка	
	рання	яя, т/га	плодов общая,		бщая, за два года		кая ±
			T/Γ	т/га (общая),			
	2024 г	2025 г	2024 г	2025 г	т/га	т/га	%
Контроль	16,7	16,4	86,8	75,9	81,35	-	-
Вигор Форте	19,4	18,5	92,6	88,6	90,60	9,25	11,4
Эпин-экстра	18,4	18,2	90,5	87,8	89,15	7,80	9,6
Биосил	18,1	17,8	87,1	86,1	86,60	5,25	6,5
Байкал -ЭМ1	17,5	17,2	88,2	78,9	83,55	2,20	2,7
Альбит	18,7	18,3	91,2	88,1	89,65	8,30	10,2
Изабион,	20,0	19,2	93,4	89,2	91,30	9,95	12,2
Гумат калия	19,3	18,6	92,4	88,5	90,45	9,10	11,2
Фосфатовит	19,7	19,0	93,0	88,9	90,95	9,60	11,8
Экстрасол	20,1	19,2	93,7	89,4	91,55	10,2	12,5
Оберегъ	18,1	17,9	87,1	86,4	86,75	5,4	6,6
HCP ₀₅ т/га			1,10	0,98			

Наметившаяся тенденция разделения действия препаратов на 2 группы, которую мы выделили при оценке параметров роста рассады и продолжили наблюдать по гибриду Государь также присутствует, но до 10% прибавку в контролю обеспечивают только 4 препарата, а еще 6 препаратов показали прибавку урожая более 10% и к ним практически в том же порядке нарастания добавился — Альбит, Гумат калия, Вигор форте, Фосфатовит, Изабион и Экстрасол.

Выводы. Варьирование высоты рассады гибридов в опытных вариантах от 23,6 см по препарату Байкал-ЭМ1 до 27,0 по препарату Экстрасол определялось в большей степени действием именно препаратов и в минимальной степени, выделить которую в показателе невозможно. Данные показатели высоты массы обеспечили высокий процент хорошо прижившейся рассады в открытом грунте. Разница между некоторыми опытными вариантами хотя и была минимальна, однако достоверна. Действие препаратов можно разделить фактически на 2 группы. 1 группа объединяет препараты: Байкал ЭМ 1, Биосил, Оберегъ, Эпин-экстра, Альбит, высота рассады которых достигает 26,0 см, а площадь листовой поверхности 132,4 см². Вторая группа имеет высоту растений от 26,1 до 27,0 см, а максимальная площадь листовой поверхности не превышает 155 cm² и, она объединяет препараты: Гумат калия, Вигор форте, Фосфатовит, Изабион и Экстрасол. Как видим обе группы объединят по 5 изучаемых препаратов. Применяемые для некорневых обработок стимуляторы роста способствуют увеличению средней массы плодов, с большим эффектом по препаратам Фосфатовит и Изабион по обоим гибридам, однако масса плодов гибрида Донской по этим вариантам больше на 15-17 г. Неблагоприятные погодные условия лет исследований при высоком адаптационном и продукционном потенциале изученных гибридов не позволили получить высокий урожай. Дополнительное орошение (капельный полив) не смогло в условиях практически полного отсутствия осадков в течение летних месяцев в полной мере обеспечить потребности растений в воде для формирования урожая.

По обоим гибридам наиболее сильный эффект в увеличении величины урожая показали препараты Гумат калия, Вигор форте, Фосфатовит, Изабион и Экстрасол в порядке увеличения показателя.

Список литературы:

- 1. Авдеенко, А.П. Повышение продуктивности гороха при применении биостимуляторов / А. П. Авдеенко, В. А. Дистель // Современные наукоемкие технологии основа модернизации агропромышленного комплекса : Материалы международной научно-практической конференции, пос. Персиановский, 10 февраля 2021 года. пос. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный аграрный университет", 2021. С. 99-102.
- 2. Авдеенко, С.С. Роль Нанокремния в изменении показателей качества гибридов томата в открытом грунте приазовской зоны Ростовской области / С.С. Авдеенко, А.П. Авдеенко // Приоритетные направления инновационного развития сельского хозяйства: материалы Всероссийской научно-практической конференции. Нальчик, 2020. С. 8-11.
- 3. Ермилов, А. В. Влияние органоминеральных удобрений на урожайность озимой пшеницы на черноземе южном / А. В. Ермилов, Р. А. Каменев, Е. Г. Баленко // Ресурсосбережение и адаптивность в технологиях возделывания сельскохозяйственных культур и переработки продукции растениеводства : материалы международной научнопрактической конференции, пос. Персиановский, 06 февраля 2020 года. пос. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный аграрный университет", 2020. С. 17-19.
- 4. Ермилов, А. В. Влияние органоминеральных удобрений на урожайность озимой пшеницы на черноземе южном / А. В. Ермилов, Р. А. Каменев, Е. Г. Баленко // Ресурсосбережение и адаптивность в технологиях возделывания сельскохозяйственных культур и переработки продукции растениеводства : материалы международной научнопрактической конференции, пос. Персиановский, 06 февраля 2020 года. пос. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный аграрный университет", 2020. С. 17-19.
- 5. Ермилов, А. В. Эффективность органоминеральных стимуляторов роста растений на озимой пшенице в условиях Ростовской области / А. В. Ермилов, Р. А. Каменев, Е. Г. Баленко // Ресурсосбережение и адаптивность в технологиях возделывания сельскохозяйственных культур и переработки продукции растениеводства : материалы международной научно-практической конференции, пос. Персиановский, 07 февраля 2019 года. пос. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный аграрный университет", 2019. С. 14-17.
- 6. Капитанова, Е. И. Влияние стимуляторов корнеобразования на выход и качество саженцев при размножении укороченными черенками / Е. И. Капитанова, С. С. Авдеенко // Сельскохозяйственное землепользование и продовольственная безопасность : Материалы X Международной научно-практической конференции, посвященной памяти Заслуженного деятеля науки РФ, КБР, Республики Адыгея, профессора Б.Х. Фиапшева, Нальчик, 22 марта 2024 года. Нальчик: Кабардино-Балкарский государственный аграрный университет им. В.М. Кокова, 2024. С. 49-52.
- 7. Литвинов, С.С. Методика полевого опыта в овощеводстве / С.С. Литвинов. Москва: Россельхозакадемия, 2011. 650 с.
- 8. Нестерова, Е. М. Возделывание кукурузы на зерно с использованием регуляторов роста в условиях Ростовской области / Е. М. Нестерова, В. В. Турчин, А. А. Громаков // Приоритетные направления развития сельскохозяйственной науки и практики в АПК : материалы всероссийской (национальной) научно-практической конференции : в 3 т., пос.

- Персиановский, 24 декабря 2021 года. Том І. пос. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный аграрный университет", 2021. С. 118-120.
- 9. Нестерова, Е. М. Возделывание кукурузы на зерно с использованием регуляторов роста в условиях Ростовской области / Е.М. Нестерова, В.В. Турчин, А.А. Громаков // Приоритетные направления развития сельскохозяйственной науки и практики в АПК : материалы всероссийской (национальной) научно-практической конференции : в 3 т., пос. Персиановский, 24 декабря 2021 года. Том І. пос. Персиановский: Федеральное государственное образовательное учреждение высшего профессионального образования "Донской государственный аграрный университет", 2021. С. 118-120.
- 10. Проскурин, Е. В. Влияние росторегулирующих препаратов на структуру урожайности и продуктивность растений ярового ячменя / Е. В. Проскурин, А. П. Авдеенко // Аграрная наука и производство: новые подходы и актуальные исследования: материалы международной научно-практической конференции: в 3 т., Персиановский, 11–13 февраля 2025 года. Персиановский: Донской государственный аграрный университет, 2025. С. 92-96.
- 11. Проскурин, Е. В. Роль стимуляторов роста в улучшении показателей жизнеспособности семян гибридов интедерминантного томата / Е. В. Проскурин, М. С. Микита, С. С. Авдеенко // Развитие аграрной науки и практики: состояние, проблемы и перспективы : Материалы международной научно-практической конференции, посвященной 115-летию агрономического факультета Донского ГАУ, п. Персиановский, 26 мая 2022 года. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет", 2022. С. 60-63.
- 12. Рябцева, Н. А. Комплексная оценка влияния обработки семян ярового ячменя росторегулирующими препаратами на их прорастание / Н. А. Рябцева // Вестник Донского государственного аграрного университета. 2023. № 3(49). С. 27-34.
- 13. Рябцева, Н. А. Эффективность регуляторов роста и развития по вегетации Hordeum vulgare L / Н. А. Рябцева // Ресурсосбережение и адаптивность в технологиях возделывания сельскохозяйственных культур и переработки продукции растениеводства : материалы международной научно-практической конференции, пос. Персиановский, 06 февраля 2020 года. пос. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный аграрный университет", 2020. С. 89-92.
- 14. Соколовская, Т. В. Влияние стимуляторов роста на развитие рассады томата / Т. В. Соколовская, С. С. Авдеенко, А. П. Авдеенко // Известия Дагестанского ГАУ. -2023. -№ 1(17). С. 79-85.
- 15. Турчин, В. В. Влияние биологически активных препаратов на продуктивность сорго зернового в условиях Ростовской области / В. В. Турчин // Современные научные исследования в АПК: актуальные вопросы, достижения и инновации : Материалы всероссийской (национальной) научно-практической конференции. В 3-х томах, пос. Персиановский, 22 декабря 2022 года. Том І. п. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет", 2022. С. 129-132.
- 16. Фетюхин, И. В. Влияние росторегулирующих веществ на продуктивность гибридов подсолнечника в условиях Ростовской области / И. В. Фетюхин, И. А. Авдеенко // Аграрная наука и производство в условиях становления цифровой экономики Российской Федерации : материалы международной научно-практической конференции. В 2 т., Персиановский, 06–08 февраля 2024 года. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет", 2024. С. 188-191.
- 17. Фетюхин, И. В. Повышение продуктивности подсолнечника гибрида Имми при некорневой подкормке регуляторами роста в условиях Ростовской области / И. В. Фетюхин, И. А. Авдеенко // Современные научные исследования в АПК: актуальные вопросы, достижения

- и инновации : Материалы всероссийской (национальной) научно-практической конференции. В 3-х томах, пос. Персиановский, 22 декабря 2022 года. Том І. п. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет", 2022. С. 133-137.
- 18. Шаповалов, О.А. Регуляторы роста растений для овощных культур. Обзор. / О.А. Шаповалов, В.В. Вакуленко, Л.Д. Прусаков // Гавриш. 2009, №3. С. 14-18.
- 19. Шибзухов, З.С. Влияние регуляторов роста на продуктивность томата / З.С. Шибзухов, А.К. Езаов, А.А. Шугушхов. // Известия Кабардино-Балкарского государственного аграрного университета им. В.М. Кокова. 2015. N 3(9). С. 48-53.
- 20. Шишкин, М. С. Влияние регуляторов роста на урожайность озимой пшеницы / М. С. Шишкин, А. П. Авдеенко // Аграрная наука и производство в условиях становления цифровой экономики Российской Федерации : материалы международной научно-практической конференции. В 2 т., Персиановский, 06–08 февраля 2024 года. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет", 2024. С. 192-195.
- 21. Эффективность применения регулятора роста растений Агрореал, ВЭ на сое в приазовской зоне Ростовской области / В.М. Назаренко, Г.Е. Мажуга, А.А. Громаков, И.А. Колесников // Основные тенденции развития АПК в современной России : материалы всероссийской (национальной) научно-практической конференции. В 2 т., Персиановский, 25 декабря 2024 года. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет", 2024. С. 68-72.
- 22. Эффективность регулятора роста растений Вэрва-ель на подсолнечнике в приазовской зоне Ростовской области / А.А. Громаков, Г.Е. Мажуга, Т В. Хуршкайнен [и др.] // Развитие аграрной науки и практики: состояние, проблемы, перспективы : материалы Всероссийской научно-практической конференции, Персиановский, 26 мая 2023 года. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет", 2023. С. 94-98.
- 23. Kocira, S.; Szparaga, A.; Hara, P.; Treder, K.; Findura, P.; Bartoš, P.; Filip, M. Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation // Sci. Rep. 2020. N. 14, Vol. 12.

References:

- 1. Avdeenko, A.P. Increasing pea productivity through the use of biostimulants / A. P. Avdeenko, V. A. Distel // Modern Science-Intensive Technologies The Basis for the Modernization of the Agro-Industrial Complex: Proceedings of the International Scientific and Practical Conference, Persiyanovsky, February 10, 2021. Persiyanovsky: Federal State Budgetary Educational Institution of Higher Professional Education "Don State Agrarian University", 2021. pp. 99-102.
- 2. Avdeenko, S.S. The Role of Nanocrystalline Silicon in Changing the Quality Indicators of Tomato Hybrids in the Open Ground of the Azov Region of the Rostov Oblast / S.S. Avdeenko, A.P. Avdeenko // Priority Directions of Innovative Development of Agriculture: Proceedings of the All-Russian Scientific and Practical Conference. Nalchik, 2020. pp. 8-11.
- 3. Effectiveness of the plant growth regulator Verva-El on sunflower in the Azov region of the Rostov Region / A.A. Gromakov, G.E. Mazhuga, T.V. Khurshkainen [et al.] // Development of Agrarian Science and Practice: Status, Problems, Prospects: Proceedings of the All-Russian Scientific and Practical Conference, Persianovsky, May 26, 2023. Persianovsky: Federal State Budgetary Educational Institution of Higher Education "Don State Agrarian University", 2023. pp. 94-98.
- 4. Effectiveness of using the plant growth regulator Agroreal, WE on soybeans in the Priazovye zone of the Rostov region / V.M. Nazarenko, G.E. Mazhuga, A.A. Gromakov, I.A. Kolesnikov //

- Main Trends in the Development of the Agro-Industrial Complex in Modern Russia: Proceedings of the All-Russian (National) Scientific and Practical Conference. Vol. 2, Persianovsky, December 25, 2024. Persianovsky: Federal State Budgetary Educational Institution of Higher Education "Don State Agrarian University", 2024. pp. 68-72.
- 5. Ermikov, A. V. The effectiveness of organomineral plant growth stimulants on winter wheat under the conditions of the Rostov region / A. V. Ermikov, R. A. Kamenev, E. G. Balenko // Resource Conservation and Adaptability in Agricultural Crop Cultivation and Crop Processing Technologies: Proceedings of the International Scientific and Practical Conference, Persianovsky, February 7, 2019. Persianovsky: Federal State Budgetary Educational Institution of Higher Professional Education "Don State Agrarian University", 2019. pp. 14-17.
- 6. Ermilov, A. V. The influence of organomineral fertilizers on the yield of winter wheat on southern chernozem / A. V. Ermilov, R. A. Kamenev, E. G. Balenko // Resource Conservation and Adaptability in Crop Production and Plant Product Processing Technologies: Proceedings of the International Scientific and Practical Conference, Persianovsky, February 6, 2020. Persianovsky Settlement: Federal State Budgetary Educational Institution of Higher Professional Education "Don State Agrarian University," 2020. pp. 17-19.
- 7. Ermilov, A. V. The influence of organomineral fertilizers on the yield of winter wheat on southern chernozem / A. V. Ermilov, R. A. Kamenev, E. G. Balenko // Resource Conservation and Adaptability in Crop Production and Plant Product Processing Technologies: Proceedings of the International Scientific and Practical Conference, Persianovsky, February 6, 2020. Persianovsky Settlement: Federal State Budgetary Educational Institution of Higher Professional Education "Don State Agrarian University," 2020. pp. 17-19.
- 8. Fetyukhin, I. V. Increasing the productivity of the Immie hybrid sunflower through foliar feeding with growth regulators under the conditions of the Rostov region / I. V. Fetyukhin, I. A. Avdeenko // Modern Scientific Research in Agro-Industrial Complex: Current Issues, Achievements, and Innovations: Proceedings of the All-Russian (National) Scientific and Practical Conference. In 3 volumes, Persiyanovsky settlement, December 22, 2022. Volume I. Persiyanovsky: Federal State Budgetary Educational Institution of Higher Education "Don State Agrarian University", 2022. pp. 133-137.
- 9. Fetyukhin, I. V. The effect of growth-regulating substances on the productivity of sunflower hybrids under the conditions of the Rostov region / I. V. Fetyukhin, I. A. Avdeenko // Agrarian Science and Production in the Context of the Development of the Digital Economy of the Russian Federation: Proceedings of the International Scientific and Practical Conference. In 2 vols., Persianovsky, February 6–8, 2024. Persianovsky: Federal State Budgetary Educational Institution of Higher Education "Don State Agrarian University", 2024. pp. 188-191.
- 10. Kapitanova, E. I. The influence of root formation stimulants on the yield and quality of seedlings during propagation by shortened cuttings / E. I. Kapitanova, S. S. Avdeenko // Agricultural Land Use and Food Security: Proceedings of the 10th International Scientific and Practical Conference dedicated to the memory of Honored Scientist of the Russian Federation, KBR, Republic of Adygea, Professor B.H. Fiapshev, Nalchik, March 22, 2024. Nalchik: Kabardino-Balkarian State Agrarian University named after V.M. Kokov, 2024. pp. 49-52.
- 11. Kocira, S.; Szparaga, A.; Hara, P.; Treder, K.; Findura, P.; Bartoš, P.; Filip, M. Biochemical and Economic Effect of Applying Biostimulants Containing Seaweed Extracts and Amino Acids as an Element of Agroecological Management of Bean Cultivation // Sci. Rep. 2020. N. 14, Vol. 12.
- 12. Litvinov, S.S. Methodology of field experience in vegetable growing / S.S. Litvinov. Moscow: Russian Agricultural Academy, 2011. P.650.
- 13. Nesterova, E. M. Cultivation of corn for grain using growth regulators under the conditions of the Rostov region / E.M. Nesterova, V.V. Turchin, A.A. Gromakov // Priority Directions in the

- Development of Agricultural Science and Practice in the Agro-Industrial Complex: Proceedings of the All-Russian (National) Scientific and Practical Conference: in 3 vols., Persionovsky settlement, December 24, 2021. Vol. I. Persionovsky: Federal State Budgetary Educational Institution of Higher Professional Education "Don State Agrarian University", 2021. pp. 118-120.
- 14. Nesterova, E. M. Cultivation of maize for grain using growth regulators in the conditions of the Rostov region / E. M. Nesterova, V. V. Turchin, A. A. Gromakov // Priority Directions in the Development of Agricultural Science and Practice in the Agro-Industrial Complex: Materials of the All-Russian (National) Scientific and Practical Conference: in 3 vols., Persiyanovsky, December 24, 2021. Vol. I. Persiyanovsky: Federal State Budgetary Educational Institution of Higher Professional Education 'Don State Agrarian University,' 2021. pp. 118-120.
- 15. Proskurin, E. V. The Role of Growth Stimulators in Improving Seed Viability Indicators of Indeterminate Tomato Hybrids / E. V. Proskurin, M. S. Mikita, S. S. Avdeenko // Development of Agrarian Science and Practice: Status, Problems, and Prospects: Proceedings of the International Scientific and Practical Conference dedicated to the 115th Anniversary of the Agronomy Faculty of Don State Agrarian University, Persiyanovsky, May 26, 2022. Persiyanovsky: Federal State Budgetary Educational Institution of Higher Education "Don State Agrarian University", 2022. pp. 60-63.
- 16. Proskurin, E.V. The Effect of Growth-Regulating Agents on the Yield Structure and Productivity of Spring Barley Plants / E.V. Proskurin, A.P. Avdeenko // Agrarian Science and Production: New Approaches and Current Research: Proceedings of the International Scientific and Practical Conference: in 3 vols., Persianovsky, February 11–13, 2025. Persianovsky: Don State Agrarian University, 2025. pp. 92-96.
- 17. Ryabtseva, N. A. Comprehensive Assessment of the Impact of Spring Barley Seed Treatment with Growth-Regulating Preparations on Their Germination / N. A. Ryabtseva // Bulletin of Don State Agrarian University. 2023. 12. Ryabtseva, N. A. The effectiveness of growth and development regulators during the vegetation of Hordeum vulgare L / N. A. Ryabtseva // Resource Conservation and Adaptability in Technologies of Cultivating Agricultural Crops and Processing Plant Products: Proceedings of the International Scientific and Practical Conference, Persianovsky, February 6, 2020. Persianovsky: Federal State Budgetary Educational Institution of Higher Professional Education "Don State Agrarian University", 2020. P. 89-92. EDN WLXXRU. No. 3(49). pp. 27-34.
- 18. Ryabtseva, N. A. The effectiveness of growth and development regulators during the vegetation of Hordeum vulgare L / N. A. Ryabtseva // Resource Conservation and Adaptability in Technologies of Cultivating Agricultural Crops and Processing Plant Products: Proceedings of the International Scientific and Practical Conference, Persianovsky, February 6, 2020. Persianovsky: Federal State Budgetary Educational Institution of Higher Professional Education "Don State Agrarian University", 2020. pp. 89-92.
- 19. Shapovalov, O.A. Plant Growth Regulators for Vegetable Crops. Review. / O.A. Shapovalov, V.V. Vakulenko, L.D. Prusakov // Gavrish. 2009, №3. pp. 14-18.
- 20. Shibzukhov, Z.S. Influence of Growth Regulators on Tomato Productivity / Z.S. Shibzukhov, A.K. Ezaov, A.A. Shugushkhov. // News of the Kabardino-Balkarian State Agrarian University named after V.M. Kokov. -2015. No 3(9). pp. 48-53.
- 21. Shishkin, M. S. The Effect of Growth Regulators on Winter Wheat Yield / M. S. Shishkin, A. P. Avdeenko // Agrarian Science and Production in the Context of the Formation of the Digital Economy of the Russian Federation: Materials of the International Scientific and Practical Conference. In 2 vols., Persianovsky, February 6–8, 2024. Persianovsky: Federal State Budgetary Educational Institution of Higher Education "Don State Agrarian University", 2024. pp. 192-195.
- 22. Sokolovskaya, T. V. The Effect of Growth Stimulators on Tomato Seedling Development / T.

- V. Sokolovskaya, S. S. Avdeenko, A. P. Avdeenko // Bulletin of the Dagestan State Agrarian University. 2023. No. 1(17). pp. 79-85.
- 23. Turchin, V. V. The influence of biologically active preparations on the productivity of grain sorghum under the conditions of the Rostov region / V. V. Turchin // Modern Scientific Research in Agriculture: Current Issues, Achievements and Innovations: Proceedings of the All-Russian (National) Scientific and Practical Conference. In 3 volumes, Persianovsky, December 22, 2022. Vol. I. Persianovsky: Federal State Budgetary Educational Institution of Higher Education "Don State Agrarian University," 2022. pp. 129-132.

Сведения об авторах:

Авдеенко Светлана Сергеевна – ФГБОУ ВО «Донской государственный аграрный университет», доцент кафедры земледелия и технологии хранения растениеводческой продукции, кандидат сельскохозяйственных наук, доцент. E-mail: <u>awdeenkoss@mail.ru</u>;

Авдеенко Алексей Петрович – ФГБОУ ВО «Донской государственный аграрный университет», профессор кафедры земледелия и технологии хранения растениеводческой продукции, доктор сельскохозяйственных наук, доцент. E-mail: awdeenko@mail.ru.

Information about the authors

Avdeenko Svetlana Sergeevna – Don State Agrarian University, Associate Professor of the Department of Agriculture and Technology of Storage of crop products, Candidate of Agricultural Sciences, Associate Professor. E-mail: awdeenkoss@mail.ru;

Avdeenko Alexey Petrovich - Don State Agrarian University, is a professor at the Department of Agriculture and Technology of Crop Storage, Doctor of Agricultural Sciences, Associate Professor. E-mail: awdeenko@mail.ru.

УДК 633.63:631.5

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ГЕРБИЦИДОВ НА ПОСЕВАХ САХАРНОЙ СВЕКЛЫ ПРИ СМЕШАННОМ ТИПЕ ЗАСОРЕННОСТИ

Фетюхин И.В., Абрамова Е.П., Винтовкин В.М.

Аннотация: Применение современных средств химизации свекловодства с учетом видового разнообразия сорных растений в агрофитоценозах является значительным резервом в повышении потенциальной продуктивности сахарной свеклы. В статье приведены результаты исследований по изучению биологической и агроэкономической эффективности использования гербицидов и их баковых смесей на посевах сахарной свеклы при смешанном типе засоренности. В опытах по общепринятым методикам изучена структура сорного компонента в посевах сахарной свеклы; установлена биологическая эффективность применения послевсходовых гербицидов и их баковых смесей на посевах сахарной свеклы; определена полевая всхожесть, густота стояния растений и средняя масса корнеплодов; определены параметры урожайности качества корнеплодов сахарной свеклы; дана экономическая биоэнергетическая оценка эффективности применения послевсходовых гербицидов на посевах сахарной свеклы. На основании проведенных исследований установлено, что против смешанного типа засоренности высокую эффективность обеспечивает послевсходовое применение гербицидов в три волны засоренности посевов по схеме: 1-я обработка Бетарен Супер нормой расхода 1,0 л/га; 2-я обработка Митрон нормой расхода 2 л/га в фазу семядолей сорняков в фазе 2-х настоящих листьев культуры; 3-я обработка Арбитр нормой расхода 0,03 π л/га в фазе 4 настоящих листьев культуры + Π AB ЭТД-90 нормой расхода 0,2 π /га.

Ключевые слова: сахарная свекла, сорные растения, гербициды, урожайность корнеплодов, сбор сахара.

EFFICACY OF HERBICIDES ON SUGAR BEET CROPS WITH MIXED TYPE OF CLOGGING

Fetyukhin I.V., Abramova E.P., Vintovkin V.M.

Abstract: The use of modern means of beet growing chemicalization, taking into account the species diversity of weeds in agrophytocenoses, is a significant reserve in increasing the potential productivity of sugar beet. The article presents the results of studies on the biological and agroeconomic efficiency of using herbicides and their tank mixtures on sugar beet crops with a mixed type of weed infestation. In experiments according to conventional methods, the structure of the weed component in sugar beet crops was studied; biological efficacy of using post-emergence herbicides and their tank mixtures on sugar beet crops was established; field germination, plant density and average mass of root crops were determined; parameters of productivity and quality of sugar beet roots were estimated; economic and bioenergetic assessment of application efficiency of post-emergence herbicides on sugar beet crops was given. Based on the studies conducted, it has been found that against the mixed type of weed infestation, high efficiency is provided by the postemergence use of herbicides in three waves of weed infestation of crops according to the scheme: 1st treatment with Betaren Super with a consumption rate of 1.0 l/ha; 2nd Mitron treatment with a rate of consumption of 2 l/ha in the phase of weed cotyledons in the phase of 2 real leaves of the crops; 3rd treatment Arbiter rate of 0.03 l/ha in phase 4 of real crop leaves + surfactant ETD-90 rate of 0.2 l/ha.

Key words: sugar beets, weeds, herbicides, root crop yields, sugar harvesting.

Введение. Сахарная свекла, как пропашная культура, обладает очень низкой конкурентной способностью к сорнякам в период от всходов до смыкания рядков и при высокой засоренности посевов существенно снижается урожайность и качество корнеплодов. Значительным резервом в повышении продуктивности культуры является применение современных средств химизации свекловодства с учетом видового разнообразия сорных растений в агрофитоценозах.

Различные теоретические и прикладные аспекты химического метода борьбы с сорняками в посевах сахарной свеклы в различных регионах России рассматривались в работах таких ученых, как К.С. Артохин, В.В. Гамуев, О.В. Гамуев, О.А. Минакова, В.М. Вилков, В.А. Дорошенко, С.И. Матушкин, И.А. Прищепа И.В. Фетюхин [1, 2, 3, 4, 5, 7, 9] и другие. Вместе с тем, вопросы оценки эффективности применения послевсходовых гербицидов и их баковых смесей против смешанного типа засоренности на посевах сахарной свеклы в агрофитоценозах приазовской зоны Ростовской области изучены недостаточно, что и определяет актуальность исследований.

Цель и задачи исследования. Целью исследований является определение биологической и агроэкономической эффективности применения послевсходовых гербицидов и их баковых смесей против смешанного типа засоренности на посевах сахарной свеклы.

В задачи исследования входило: провести количественно-видовой анализ структуры сорного компонента в посевах сахарной свеклы; определить показатели полевой всхожести, средней массы корнеплодов и густоты стояния растений; определить биологическую эффективность изучаемых вариантов химической прополки посевов; определить урожайность и качественные показатели корнеплодов; дать оценку эффективности изучаемых схем применения гербицидов.

Условия, материалы и методы исследования. Исследования проводились в производственных посевах на территории Азовского района Ростовской области в 2022-2023 с.-х. году.

Схема однофакторного опыта:

Вариант 1. 1-я обработка Бетарен Супер МД, МКЭ нормой расхода 1л/га в фазу появления семядолей культуры; 2-я обработка Бетарен Супер МД, МКЭ нормой расхода 1,5 л/га в фазу 2-х настоящих листьев культуры; 3-я обработка Бетарен Супер МД, МКЭ нормой расхода 3,0 л/га в фазе 4 настоящих листьев культуры.

Вариант 2. 1-я обработка Бетарен Супер МД, МКЭ нормой расхода 1,0 л/га; 2-я обработка Митрон, КС нормой расхода 2 л/га в фазу семядолей сорняков в фазе 2-х настоящих листьев культуры; 3-я обработка Арбитр, МКЭ нормой расхода 0,03 л/га в фазе 4 настоящих листьев культуры + ПАВ ЭТД-90 нормой расхода 0,2 л/га.

Вариант 3. 1-я обработка Митрон, КС нормой расхода 1,0 л/га + Бетарен Супер МД, МКЭ нормой расхода 1,0 л/га в фазу семядолей сорняков; 2-я обработка Арбитр, МКЭ нормой расхода 0,03 л/га в фазе 4 настоящих листьев культуры + ПАВ ЭТД-90 нормой расхода 0,2 л/га.

В соответствии с поставленной целью и задачами исследований была разработана следующая методика исследований: закладка полевых опытов проводилась в соответствии с требованиями методики опытного дела (Моисейченко В.Ф. и др., 1996) [6]; изучение структуры сорного компонента путем учета количественно-видового состава сорняков [10]; определение сахаристости корнеплодов с использованием рефрактометра ИРФ-470; полевая всхожесть, густота стояния растений и учет урожая корнеплодов определялись в соответствии с Методикой государственного сортоиспытания сельскохозяйственных культур (Федин М.А., 1985) [8]; статистический анализ результатов исследований проводился методами дисперсионного и корреляционного анализа; эффективность результатов исследований определяли методами оценки экономической биоэнергетической оценки.

Опыты размещались по предшественнику озимая пшеница по пару. После уборки

предшествующей культуры с целью измельчения растительных остатков проводилось дискование на глубину 8-10 см, затем вспашка на глубину 27-30 см. Перед уходом в зиму культивация с одновременным шлейфованием. С осени под вспашку внесение диаммофоски 200 кг/га и сульфата аммония 150 кг/га, весной под предпосевную культивацию аммиачную селитру 150 кг/га. Весной проведено боронование и предпосевная культивация. Посев проводили 2 апреля нормой 130 тыс. всхожих и чистых семян/га на глубину 3,0-4,0 см. В опыте высевали среднеспелый гибрид Байкал. Уход за посевами предусматривал одну междурядную обработку и дробное внесение гербицидов по вегетации культуры, а также обработку фунгицидами и инсектицидами при наступлении экономического порога вредоносности.

Результаты исследования. Как показали исследования, структура видового состава сорных растений в опытах представлена смешанным типом засоренности — малолетние однодольные и двудольные, а также многолетние корнеотпрысковые виды сорняков. Учет засоренности посевов сахарной свеклы на контрольном варианте опыта при трехкратной обработке гербицидом Бетарен Супер показал, что средняя численность сорняков перед химической обработкой составила 41,5 шт./м². В остальных вариантах засоренность существенно не отличалась и находилась в диапазоне 40,4...44,2 шт./м². В структуре сорного компонента преобладал однодольный поздний яровой сорняк — щетинник сизый (9,3...11,7 шт./м²).

При определении засоренности посевов сахарной свеклы после обработок гербицидами установлено, что на контроле, при трехкратной обработке гербицидом Бетанал Супер общая численность сорняков составила 19,8 шт./м² (табл. 1). Данный гербицид при трехкратной обработке проявил высокую эффективность против двудольных малолетних сорняков, вместе с тем, отмечается низкая эффективность против многолетних корнеотпрысковых видов. Наибольшая эффективность отмечается при трехкратной обработке по схеме: 1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка Арбитр + ПАВ ЭТД-90. В этом варианте опыта общая численность сорняков составила 1,9 шт./м².

Таблица 1 – Численность видового состава сорняков в посевах сахарной свеклы (через 14 дней после последних обработок гербицидами), шт./м²

	- ' '			7 1 0 11 1	Pom	, , ,				
Вариант опыта	Марь белая	Амброзия полыннолистная	Горчица полевая	Щетинник сизый	Щирица жминдолистная	Подмаренник цепкий	Щирица запрокинутая	Бодяк полевой	Вьюнок полевой	Всего
1-я обработка Бетарен Супер 2-я обработка Бетарен Супер 3-я обработка Бетарен Супер (контроль)	11,5	0	0,3	1,7	0,8	1,2	0	1,7	2,6	19,8
1-я обработка Бетарен Супер 2-я обработка Митрон 3-я обработка Арбитр + ПАВ ЭТД-90	0,3	0,3	0	1,0	0	0	0	0	0,3	1,9
1-я обработка Митрон + Бетарен Супер 2-я обработка Арбитр + ПАВ ЭТД-90	0,4	1,4	3,8	0,8	0,5	0,7	0,2	0,4	0,5	8,7

В первую волну засоренности высокую эффективность против двудольных малолетних сорняков проявил гербицид Бетарен Супер, во вторую волну засоренности были уничтожены двудольные сорняки и создан почвенный экран, обеспечивающий продолжительную защиту от прорастания сорняков, а в третью волну засоренности против двудольных малолетних и многолетних корнеотпрысковых сорняков эффективность проявил гербицид Арбитр с ПАВ ЭТД-90. При двукратной обработке посевов применялась баковая смесь гербицидов против двудольных малолетних сорняков. В этом варианте опыта общая численность сорняков

составила 8,7 шт./м², что свидетельствует о более низкой эффективности по сравнению с трехкратной обработкой гербицидами Бетарен Супер, Митрон и Арбитр + ПАВ ЭТД-90.

Наибольшая биологическая эффективность применения гербицидов против смешанного типа засоренности отмечается в варианте с трехкратным опрыскиванием посевов сахарной свеклы по схеме: 1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка Арбитр + ПАВ ЭТД-90 (табл. 2). В этом варианте опыта биологическая эффективность истребительных мероприятий составила 95,7%. Более низкий показатель эффективности химической прополки отмечается при двукратной обработке по схеме: 1-я обработка Митрон + Бетарен Супер; 2-я обработка Арбитр + ПАВ ЭТД-90 — 78,5% и наиболее низкая биологическая эффективность применения гербицидов отмечается при трехкратной обработке Бетареном Супер - 52,3%.

Таблица 2 - Биологическая эффективность применения гербицидов в посевах сахарной свеклы

	Численнос		
Вариант опыта	до обработки гербицидами	после обработки гербицидами	Биологическая эффективность,%
1-я обработка Бетарен Супер; 2-я			
обработка Бетарен Супер; 3-я	41,5	19,8	52,3
обработка Бетарен Супер (контроль)			
1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка	44,2	1,6	95,7
Арбитр + ПАВ ЭТД-90	,	,	,
1-я обработка Митрон +			
Бетарен Супер; 2-я обработка	40,4	8,7	78,5
Арбитр + ПАВ ЭТД-90			

Как показали исследования, существенных различий по полевой всхожести семян и густоты стояния растений к уборке в изучаемых схемах применения гербицидов не наблюдается. Генетический потенциал возделываемого гибрида сахарной свеклы и сложившееся фитосанитарное состояние посевов оказали влияние на среднюю массу корнеплодов в изучаемых вариантах с обработкой гербицидами. В варианте опыта с трехкратным повсходовым опрыскиванием посевов сахарной свеклы по схеме: 1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка Арбитр + ПАВ ЭТД-90 складывается наибольшая средняя масса корнеплодов (463,2 гр.), а наименьшим этот показатель отмечается на контроле, при трехкратной обработке гербицидом Бетарен Супер — 343,2 гр.

Наибольшая биологическая урожайность корнеплодов складывается в варианте с трехкратным опрыскиванием посевов сахарной свеклы по схеме: 1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка Арбитр + ПАВ ЭТД-90. В этом же варианте складывается и наибольшая сахаристость корнеплодов 18,1% (табл. 3). Наименьшая биологическая урожайность и сахаристость корнеплодов получена на контроле.

Дисперсионный анализ показал, что в вариантах с применением гербицидов Митрон и Арбитр отмечается статистически достоверная прибавка урожайности корнеплодов по сравнению с контролем, так прибавка составила 8,1...14,6 т/га при наименьшей существенной разнице 6,23 т/га.

Наивысшие значения сбора сахара отмечаются в варианте с трехкратным опрыскиванием посевов сахарной свеклы по схеме: 1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка Арбитр + ПАВ ЭТД-90 (9,84 т/га). Наименьший сбор сахара наблюдается на контроле.

Расчеты коэффициентов корреляционной зависимости показали (табл. 4), что между урожайностью и полевой всхожестью отмечается низкая обратная корреляционная

зависимость (r=-0,662). Между биологической урожайностью корнеплодов и такими показателями как средняя масса корнеплодов, биологическая эффективность гербицидов и густота стояния растений к уборке отмечается наиболее тесная прямая корреляционная зависимость (r=0,801...0,999). Между урожайностью и засоренностью посевов наблюдается высокая обратная корреляционная зависимость (r=-0,997).

Таблица 3 - Урожайность и качество гибридов сахарной свеклы

Вариант опыта	Сахаристость, %	Биологическая урожайность корнеплодов, т/га	Разница биологической урожайности к контролю, т/га	Сбор сахара, т/га
1-я обработка Бетарен Супер; 2-я обработка Бетарен Супер; 3-я обработка Бетарен Супер (контроль)	16,3	39,5	-	6,44
1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка Арбитр + ПАВ ЭТД-90	18,1	54,1	+14,6	9,84
1-я обработка Митрон + Бетарен Супер; 2-я обработка Арбитр +ПАВ ЭТД-90	17,7	47,6	+8,1	8,42
HCP ₀₅	0,89	6,23	-	-

Таблица 4 - Коэффициенты корреляционной зависимости между биологической урожайности корнеплодов и показателями, изучаемыми в опытах

Показатель	Коэффициент корреляции
Засоренность посевов, шт./м ²	-0,99721
Биологическая эффективность гербицидов, %	0,99843
Средняя масса корнеплодов, г	0,99937
Полевая всхожесть, %	-0,66208
Густота стояния растений к уборке, %	0,80164

Таблица 5 - Экономическая оценка результатов исследований

Вариант опыта	Сбор сахара, т/га	Стоимость продукции с 1 га, тыс. руб.	Затраты на обработку гербицидами, тыс. руб./га	Затраты на выращивание и переработку, тыс. руб.	Себестоимость 1 т корнеплодов, тыс. руб.	Условно-чистый доход, тыс. руб.	Уровень рентабельности, %
1-я обработка Бетарен Супер 2-я обработка Бетарен Супер 3-я обработка Бетарен Супер (контроль)	6,44	313,4	11,93	158,62	24,6	154,8	97,6
1-я обработка Бетарен Супер 2-я обработка Митрон 3-я обработка Арбитр + ПАВ ЭТД-90	9,84	461,4	10,74	185,43	18,8	275,9	148,8
1-я обработка Митрон + Бетарен Супер 2-я обработка Арбитр + ПАВ ЭТД-90	8,42	409,8	6,76	169,46	20,1	240,3	141,8

Наибольший уровень рентабельности получен в варианте с трехкратным опрыскиванием посевов сахарной свеклы по схеме: 1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка Арбитр + ПАВ ЭТД-90 – 148,8% (табл. 5). Наименьший уровень рентабельности получен на контроле - 97,6%. Двукратная обработка гербицидами обеспечила уровень рентабельности 141,8%.

Наибольший коэффициент энергетической эффективности (2,35) складывается в варианте с трехкратным опрыскиванием посевов сахарной по схеме: 1-я обработка Бетарен Супер; 2-я обработка Митрон; 3-я обработка Арбитр + ПАВ ЭТД-90. Наименьшим этот показатель отмечается на контроле при трехкратной обработке гербицидом Бетарен Супер (1,83). Двукратная обработка гербицидами по схеме: 1-я обработка Митрон + Бетарен Супер; 2-я обработка Арбитр + ПАВ ЭТД-90 обеспечила коэффициент энергетической эффективности на уровне 2,15.

Выводы. Результаты проведенных исследований позволяют рекомендовать свеклосеющим предприятиям для послевсходового применения гербицидов против смешанного типа засоренности (малолетние двудольные и некоторые многолетние корнеотпрысковые сорняки) трехкратное опрыскиванием посевов по схеме: 1-я обработка Бетарен Супер нормой расхода 1,0 л/га; 2-я обработка Митрон нормой расхода 2 л/га в фазу семядолей сорняков в фазе 2-х настоящих листьев культуры; 3-я обработка Арбитр нормой расхода 0,03 л/га в фазе 4 настоящих листьев культуры + ПАВ ЭТД-90 нормой расхода 0,2 л/га.

Список литературы

- 1. Артохин, К.С. Защита сахарной свеклы от вредителей и сорняков: научно-практические рекомендации /К.С. Артохин. Изд-во «Foundaion». Ростов-на-Дону, 2020. 74 с.
- 2. Гаджиева, Г.И. Контроль засоренности посевов сахарной свеклы с помощью гербицида Хилер, МКЭ / Г. И. Гаджиева, О. В. Подковенко // Сахарная свекла. 2024. № 5. С. 15-18.
- 3. Гамуев, В.В. Эффективность применения комплекса гербицидов и адъювантов в посевах сахарной свеклы / В. В. Гамуев, О. В. Гамуев // Сахарная свекла. 2018. № 8. С. 36-38.
- 4. Гамуев, О.В. Влияние сниженных норм гербицидов на фитосанитарное состояние посевов и урожайность сахарной свеклы в ЦЧР / О. В. Гамуев, О. А. Минакова, В. М. Вилков // Сахарная свекла. -2024. -№ 9. С. 9-13.
- 5. Дорошенко, В.А. Новые формы бетанала / В.А. Дорошенко, С.И. Матушкин // Сахарная свекла. 1993. №3 С. 22.
- 6. Моисейченко, В.Ф. Основы научных исследований в агрономии / В.Ф. Моисейченко, М.Ф. Трифонова, А.Х. Заверюха, В.Е. Ещенко, М.: Колос, 1996. 336 с.
- 7. Прищепа, И.А. Совместное применение гербицидов, удобрений и ПАВ / И.А. Прищепа // Защита и карантин растений. 2003. № 2. С. 26- 27.
- 8. Федин, М.А. Методика государственного сортоиспытания сельскохозяйственных культур. Общая часть / М.А. Федин // М., 1985. 267 с.
- 9. Фетюхин, И.В. Адаптивная технология возделывания сахарной свеклы / И.В. Фетюхин // п. Персиановский, 2007. 234 с.
- 10. Фетюхин, И.В. Методы учета структуры сорного компонента в агрофитоценозах : учебное пособие / составители И. В. Фетюхин [и др.]. Персиановский : Донской ГАУ, 2018.

References

- 1. Artokhin, K.S. Protection of sugar beets from pests and weeds: scientific and practical recommendations/K.S. Artokhin. Foundaion Publishing House. Rostov-on-Don, 2020. pp.74.
- 2. Hajiyeva, G.I. Control of weed infestation of sugar beet crops with the help of herbicide Hiler, FEM/G.I. Hajiyeva, O. V. Podkovenko//Sugar beet. -2024. N₂ 5. pp.15-18.
- 3. Gamuev, V.V. Effectiveness of using a complex of herbicides and adjuvants in sugar beet crops/V.V. Gamuev, O.V. Gamuev//Sugar beet. $-2018. N_{\odot} 8.$ pp. 36-38.
- 4. Gamuev, O.V. The effect of reduced herbicide standards on the phytosanitary state of crops and the yield of sugar beets in the CHR/O. V. Gamuev, O. A. Minakova, V. M. Vilkov//Sugar beet. –

- 2024. № 9. pp. 9-13.
- 5. Doroshenko, V.A. New forms of betanal / V.A. Doroshenko, S.I. Matushkin // Sugar beet. 1993. NO. 3 pp. 22.
- 6. Moiseichenko, V.F. Fundamentals of scientific research in agronomy / V.F. Moiseichenko, M.F. Trifonova, A.Kh. Zaveryukha, V.E. Yeshchenko. M.: Kolos, 1996. pp.336.
- 7. Prischepa, I.A. Joint use of herbicides, fertilizers and surfactants/I.A. Prischepa//Protection and quarantine of plants. 2003. № 2. pp. 26-27.
- 8. Fedin, M.A. Methods of state variety testing of crops. General part / M.A. Fedin. M., 1985. 267 p.
- 9. Fetyukhin, I.V. Adaptive technology of sugar beet cultivation / I.V. Fetyukhin / Persianovsky, 2007. P.234.
- 10. Fetyukhin, I.V. Methods for taking into account the structure of the weed component in agrophytocenoses: textbook/compilers I.V. Fetyukhin [et al.]. Persianovsky: Donskoy GAU, 2018.

Информация об авторах

Фетюхин Игорь Викторович - доктор сельскохозяйственных наук, доцент, ФГБОУ ВО «Донской государственный аграрный университет», заведующий кафедрой земледелия и технологии хранения растениеводческой продукции, E-mail: fetuchin@yandex.ru\$

Абрамова Елена Петровна - ФГБОУ ВО «Донской государственный аграрный университет», магистрант кафедры земледелия и технологии хранения растениеводческой продукции, E-mail: <u>abramova.ep@agrokomplex.ru</u>;

Винтовкин Вадим Михайлович - ФГБОУ ВО «Донской государственный аграрный университет», магистрант кафедры земледелия и технологии хранения растениеводческой продукции, E-mail: zemleddgau@yandex.ru.

Information about the authors

Fetyukhin Igor Viktorovich - Doctor of Agricultural Sciences, Associate Professor, Federal State Budgetary Educational Institution of Higher Education Don State Agrarian University, Head of the Department of Agriculture and Storage Technology of Crop Products, E-mail: fetuchin@yandex.ru; **Abramova Elena Petrovna** - Federal State Budgetary Educational Institution of Higher Education Don State Agrarian University, postgraduate student of the Department of Agriculture and Technology of Crop Products Storage, E-mail: abramova.ep@agrokomplex.ru;

Vintovkin Vadim Mikhailovich - Federal State Budgetary Educational Institution of Higher Education Don State Agrarian University, postgraduate student of the Department of Agriculture and Technology of Crop Products Storage, E-mail: zemleddgau@yandex.ru.

УДК 632:633.854.78

РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ СОВРЕМЕННЫХ СРЕДСТВ ЗАЩИТЫ РАСТЕНИЙ ПРИ ВЫРАЩИВАНИИ ПОДСОЛНЕЧНИКА В ПРИАЗОВСКОЙ ЗОНЕ РОСТОВСКОЙ ОБЛАСТИ

Пойда В.Б., Збраилов М.А., Фалынсков Е.М.

Аннотация: Исследования показали, что использование регуляторов роста растений с защитными, ростостимулирующими и регулирующими рост функциями при культивировании подсолнечника в приазовском регионе Ростовской области дает положительные результаты. Способствовало подавлению развития альтернариоза, вызывало снижение высоты растений, увеличение корневой массы, массы сырых листьев и диаметра корзинки. В среднем за два года исследований максимальная урожайность маслосемян подсолнечника — 3,26 т/га, 3,22 т/га и 3,22 т/га была сформирована в вариантах

с применением препаратов Архитект Прайм $(1,0 \ \kappa г/га)$, Архитект Прайм $(0,8 \ \kappa r/га)$ и Архитект + сульфат аммония Турбо $(1,5 + 0,8 \ \kappa r/га)$, вносимых в фазу развития подсолнечника 2-е междоузлие (GS 32 по шкале ВВСН). Прибавки от уровня контроля составили 0,45,0,41 и 0,41 m/га соответственно.

Ключевые слова: подсолнечник, регуляторы роста растений, поражаемость болезнями, биометрические показатели, урожайность маслосемян.

RESULTS OF THE STUDY OF THE EFFICIENCY OF USING MODERN PLANT PROTECTION MEANS IN SUNFLOWER CULTIVATION IN THE AZOV ZONE OF ROSTOV REGION

Poyda V.B., Zbrailov M.A., Falynskov E.M.

Abstract: Studies have shown that the use of plant growth regulators with protective, growth-stimulating and growth-regulating functions in sunflower cultivation in the Azov region of the Rostov region gives positive results. It contributed to the suppression of the development of alternariasis, caused a decrease in plant height, an increase in root mass, the mass of raw leaves and the diameter of the basket. On average, over two years of research, the maximum yield of sunflower oilseeds — 3.26 t/ha, 3.22 t/ha and 3.22 t/ha was formed in variants using the preparations Architect Prime (1.0 kg/ha), Architect Prime (0.8 kg/ha) and Architect + ammonium sulfate Turbo (1.5 + 0.8 kg/ha), introduced into the sunflower development phase of the 2nd internode (GS 32 on the BBCN scale). The gains from the control level were 0.45, 0.41, and 0.41 t/ha, respectively.

Key words: sunflower, plant growth regulators, disease susceptibility, biometric indicators, oilseed yield.

Введение. Подсолнечник является одной из наиболее рентабельных и значимых сельскохозяйственных культур, оказывающих существенное влияние на экономическое благополучие аграрных компаний разных организационно-правовых форм. Для достижения наилучших финансовых показателей в процессе выращивания подсолнечника важно учитывать специфику возделывания масличных семян этой культуры, которая, как показывает опыт, довольно требовательна и восприимчива к колебаниям окружающей среды. Специалисты полагают, что 25% успеха в культивировании подсолнечника обусловлено грамотным выбором метода его выращивания. [1; 4; 9].

Эффективное применение современных средств защиты растений является одним из важнейших технологических приемов. В агротехнологиях подсолнечника используются средства, обеспечивающие защиту от наиболее вредоносных болезней. и одновременно обладающими росторегулирующими и ростостимулирующими свойствами. В настоящее время на рынке появились современные регуляторы роста, которые при наименьших затратах на их закупку и внесение обеспечивают высокий урожай, а значит, и высокую эффективность выращивания [8; 3]. Интеграция новейших пестицидов в агротехнику любой культуры требует всесторонней оценки их воздействия на жизненный цикл растений и урожайность. Поэтому, изучение эффекта современных средств защиты, сочетающих защитные, регулирующие и стимулирующие рост свойства, на продуктивность подсолнечника в определенных условиях является актуальной и важной задачей для аграрного сектора.

Такие исследования особенно ценны для оптимизации технологических процессов в сельском хозяйстве и повышения эффективности выращивания подсолнечника.

Цель и задачи исследований. Данное исследование было направлено на определение результативности использования актуальных средств защиты растений при культивировании подсолнечника в приазовской агроклиматической зоне Ростовской области. В рамках исследования изучалось воздействие обработки подсолнечных посевов регуляторами роста,

характеризующимися защитными, стимулирующими и регулирующими рост свойствами, на восприимчивость к болезням, развитие ключевых биометрических характеристик и урожайность подсолнечных растений.

Условия, материалы и методы исследований. Исследования по оценке результативности современных препаратов для защиты растений при культивировании подсолнечника в приазовской зоне Ростовской области осуществлялись в течение 2022-2023 и 2023-2024 годов на экспериментальном участке Учебно-научно-производственного комплекса Донского ГАУ, расположенного в Октябрьском районе Ростовской области.

Донского опытном участке ГАУ представлена обыкновенным тяжелосуглинистым сформированным черноземом, на лессовидном суглинке. Климатические условия региона характеризуются умеренной континентальностью и недостаточным уровнем влажности. Метеорологические условия в годы проведения анализов отличались как между собой, так и от многолетних средних значений. Погода в сельскохозяйственном сезоне 2022-2023 года была благоприятной для получения обильных урожаев семян подсолнечника, в то время как сезон 2023-2024, из-за повышенных температур и значительного дефицита осадков, оценивается как неблагоприятный.

В качестве исследуемого материала использовали гибрид подсолнечника Дая КЛП, который был включен в Государственный реестр для Центрально-Черноземного (5) и Северо-Кавказского (6) регионов в 2017 году. Разработчиком данного гибрида является ООО «Агроплазма» (Россия).

План эксперимента по изучению действенности современных средств защиты растений при выращивании подсолнечника в приазовской зоне Ростовской области отображен в таблице 1.

Таблица 1 – Схема опыта по изучения эффективности применения современных средств защиты растений при выращивании подсолнечника

№ п/п	Вариант	Норма внесения препарата, кг/га, л/га
1	Архитект Прайм	0,6
2	Архитект Прайм	0,7
3	Архитект Прайм	0,8
4	Архитект Прайм	1,0
5	Архитект + сульфат аммония Турбо	1,0+0,5
6	Архитект + сульфат аммония Турбо	1,2+0,6
7	Архитект + сульфат аммония Турбо	1,4+0,7
8	Архитект + сульфат аммония Турбо	1,5+0,8
9	Пирафикс	0,8
10	Оптимо	0,8
11	Без обработки (контроль)	-

Для проведения эксперимента были задействованы следующие средства защиты растений: регулятор роста растений Архитект, обладающий фунгицидным действием; фунгицид Пирафикс, отличающийся выраженным физиологическим воздействием, направленным на замедление процессов старения растений; фунгицид Оптимо с AgCelence-эффектом; серосодержащее азотное удобрение Турбо (сульфат аммония), предоставляющее растениям сульфатную форму азота, легко усваиваемую, и способствующее уменьшению вымывания питательных веществ из обрабатываемой земли, снижению заболеваемости и поддержанию активного роста; и революционный на российском аграрном рынке регулятор роста Архитект Прайм с фунгицидными свойствами, для которого еще не установлены четкие регламенты и нормы применения.

Исследуемые препараты наносились ранцевым опрыскивателем на подсолнечник в фазе формирования второго междоузлия (стадия GS 32 по шкале BBCH), при норме расхода рабочей смеси 250 л/га. Опыт был повторен четырехкратно. Размер каждого опытного

участка составил 28 м². Контрольным вариантом служила необработанная площадь.

Предшествующей культурой для подсолнечника являлась озимая пшеница. Агротехнические приемы выращивания подсолнечника соответствовали рекомендациям системы CLEARFIELD PLUS ®.

Все необходимые измерения и наблюдения фиксировались в соответствии с методическими указаниями для государственного сортоиспытания сельскохозяйственных культур [6].

Идентификация симптомов поражения подсолнечника болезнями осуществлялась на основе атласа болезней подсолнечника [5], а степень развития заболеваний определялась согласно руководству "Методика проведения полевых агротехнических опытов с масличными культурами" [7].

Сбор урожая семян подсолнечника проводился вручную, с последующим обмолотом собранных корзинок. Полученные данные по урожайности были приведены к стандартным показателям влажности и засоренности и проанализированы методом дисперсионного анализа по Б.А. Доспехову [2].

Результаты исследований. В исследованиях по оценке эффективности применения современных средств защиты растений при выращивании подсолнечника учеты высоты растений, массы корневой системы и развития болезней проводились на 15-й и 25-й день после внесения изучаемых препаратов, массы сырых листьев — в период налива семян, диаметра корзинки — перед уборкой. Развитие болезней определялось по формуле: $R = (\sum a \times c) : N$, где

N – суммарное количество как пораженных, так и здоровых растений;

 \sum а × с –сумма, полученная путем умножения количества пораженных растений (а) на их соответствующий процент поражения (с), выраженная в единицах "штук × %".

Проведенными исследованиями установлено, что в погодно-климатических условиях 2022-2023 сельскохозяйственного года признаков наличия заболеваний на растениях подсолнечника не обнаружено в оба срока учета. В течение сельскохозяйственного сезона 2023-2024 годов мониторинг состояния посевов подсолнечника показал незначительное распространение альтернариоза, поражающего нижние листья растений. Спустя 15 дней после обработки, уровень поражения варьировался от 0.58 до 1.93 %, а через 25 дней после обработки этот показатель составил от 3.85 до 9.55 % (см. рис. 1). Наилучшие результаты в сдерживании развития возбудителя болезни были отмечены при использовании следующих комбинаций: Архитект + сульфат аммония Турбо (1.5+0.8 кг/га), а также препарата Архитект Прайм (1.0 кг/га).

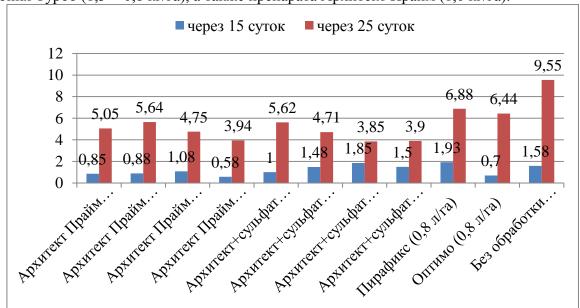


Рисунок 1 — Развитие альтернариоза (%) на растениях подсолнечника в зависимости от варианта применения изучаемых средств защиты растений, 2024 г.

При учете высоты растений через 15 суток после внесения средств защиты растений установлено, что в среднем за два года исследований изучаемые варианты на 16,0-3,6 см (23,8-5,3 %) по этому показателю уступали уровню контроля – Без обработки (рис. 2).

Спустя 25 дней после применения исследуемых составов, зафиксированная высота подсолнечника в образцах, обработанных Архитект Прай, колебалась в пределах 136,9-139,4 см. Самые низкие растения наблюдались в группе, где использовался только Архитект Прайм (1,0 кг/га).

В группах, где применялись комбинации Архитект и сульфата аммония Турбо в разных концентрациях, рост растений изменялся от 139,4 см (при дозировке Архитект + сульфат аммония Турбо (1,5 + 0,8 кг/га)) до 143,7 см (при дозировке Архитект + сульфат аммония Турбо (1,0 + 0,5 кг/га)). Наибольший рост подсолнечника – 156,2 см – был отмечен в контрольной группе (без обработки) и в группе, обработанной Оптимо (0,8 л/га), а в образце Пирафикс (0,8 л/га) значение составило 154,4 см.

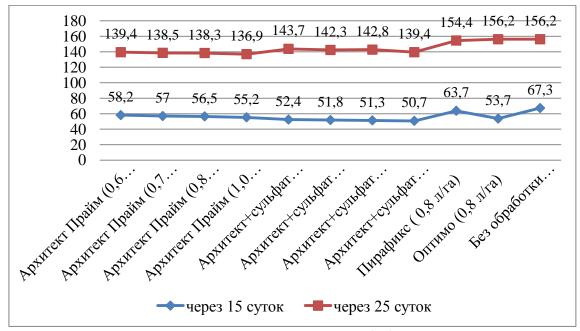


Рисунок 2 — Высота растений подсолнечника (см) через 15 и 25 суток после обработки изучаемыми препаратами, среднее 2023-2024 гг.

Масса корней подсолнечника является одним из биометрических показателей характеризующим устойчивость растений к полеганию, способность растений противостоять засухе и дефициту питательных элементов. Увеличение массы корней чаще всего свидетельствует об улучшении условий выращивания и положительно сказывается на формировании урожая. Масса корней растений подсолнечника через 15 и 25 суток после обработки изучаемыми препаратами по вариантам опыта представлена на рисунке 3.

Рассмотрев итоговые данные, стоит подчеркнуть, что благоприятное влияние исследуемых составов стало заметно спустя всего 15 дней после опрыскивания растений. Так, при внесении препарата Архитект Прайм в различных дозах масса корневой системы по сравнению с вариантом Без обработки (контроль) увеличивалась на 30-43 г или 157,9-226,3 %, в вариантах с применением Архитект + сульфат аммония Турбо – на 26-35 г (136,8-184,2 %), в варианте с внесением препаратов Пирафикс и Оптимо – на 5 и 9 г или на 26,3 и 47,4 % соответственно. Данная тенденция сохранилась и при определении массы корней через 25 суток после внесения изучаемых препаратов. Наибольшей массой корней — 124-153 г или 127,8-157,7 % от уровня контроля характеризовались варианты с применением Архитект Прайм. При обработке посевов Архитект + сульфат аммония Турбо масса корней составила 124-134 г (127,8-138,1 % от уровня контроля), Пирафикс – 106 г (109,3 %), Оптимо – 110 г (113,4 %).

При определении массы сырых листьев растений подсолнечника в период налива семян установлено, что применение изучаемых препаратов приводило к увеличению сырой массы листьев в оба года исследований (рис. 4). В среднем за два года изучения наибольший эффект наблюдался в вариантах Архитект Прайм (0,8 кг/га) и Архитект + сульфат аммония Турбо (1,5 + 0,8 кг/га). В этих вариантах отмечено увеличение сырой массы листьев по сравнению с контролем на 194 и 182 г или 50,8 и 47,6 % соответственно.

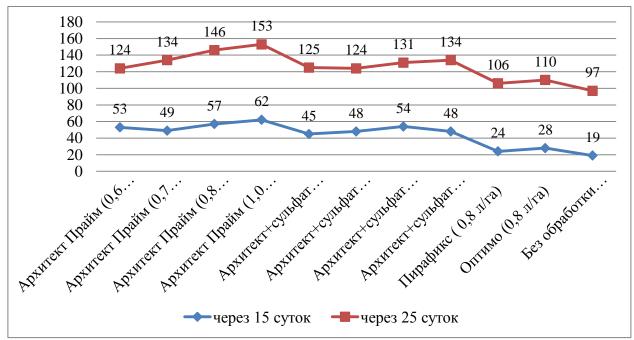


Рисунок 3 — Масса корней (г) растений подсолнечника через 15 и 25 суток после обработки изучаемыми препаратами, среднее 2023-2024 гг.

Величины урожайности подсолнечника в значительной степени коррелирует с диаметром корзинки. Чем больше диаметр корзинки, тем выше урожайность маслосемян подсолнечника. На диаметр корзинки влияют многие факторы, в том числе и применение тех или иных элементов технологии выращивания.

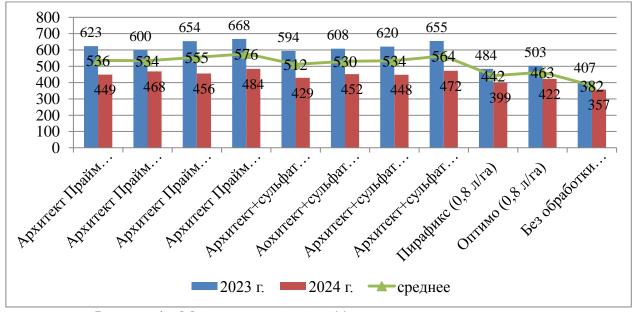


Рисунок 4 — Масса сырых листьев (г) на растении подсолнечника в зависимости от варианта применения современных средств защиты растений, 2023-2024 гг.

В ходе исследований размеров соцветий подсолнечника в 2022-2023 гг. было выявлено, что в контрольной группе (без применения каких-либо веществ) средний диаметр составил 21,9 см (см. рис. 5). Использование исследуемых средств для обработки агрокультуры способствовало росту диаметра головки на 1,4-5,1 см, что эквивалентно увеличению на 6,4-23,3 %. В 2023-2024 сельскохозяйственном году вследствие неблагоприятных погодных условий отмечено снижение диаметра корзинки на всех вариантах опыта. В то же время выявленные в предыдущем году тенденции полностью сохранились. В среднем за два года исследованием максимальным диаметром корзинки — 24,4 см (125,1 % от уровня контроля) характеризовался вариант Архитект Прайм (1,0 кг/га).

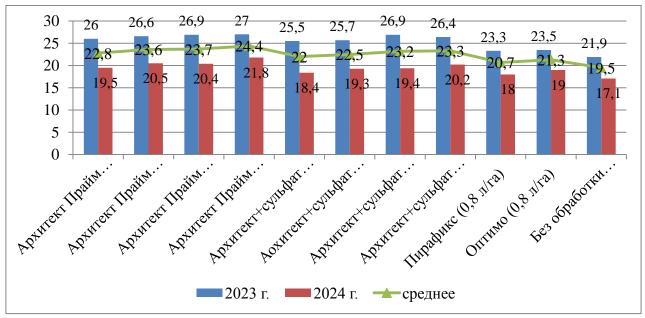


Рисунок 5 — Диаметр корзинки растений подсолнечника (см) в зависимости от варианта применения современных средств защиты растений, 2023-2024 гг.

Анализ полученных данных по урожайности выявил, что в течение сезона 2022-2023 года комбинированное использование Архитекта и сульфата аммония Турбо положительно сказалось на сборе маслосемян, увеличив его на 0,41-0,64 т/га, что эквивалентно приросту в 12,4-19,3%, определяемому количеством внесенных веществ (см. табл. 2). Внедрение Архитекта Прайм повлекло за собой увеличение урожайности на 0,49-0,66 т/га, что выражается в 114,8-119,9% относительно контрольного показателя.

Таблица 2 – Урожайность маслосемян подсолнечника в зависимости от варианта применения изучаемых средств защиты растений, 2023-2024 гг.

$N_{\underline{0}}$	Donyova	Урожайность м	аслосемян, т/га
Π/Π	Вариант	2023 г.	2024 г.
1	Архитект Прайм (0,6 кг/га)	3,80	2,38
2	Архитект Прайм (0,7 кг/га)	3,91	2,44
3	Архитект Прайм (0,8 кг/га)	3,96	2,48
4	Архитект Прайм (1,0 кг/га)	3,97	2,55
5	Архитект + сульфат аммония Турбо (1,0 + 0,5 кг/га)	3,72	2,37
6	Архитект + сульфат аммония Турбо (1,2 + 0,6 кг/га)	3,76	2,40
7	Архитект + сульфат аммония Турбо (1,4 + 0,7 кг/га)	3,88	2,46
8	Архитект + сульфат аммония Турбо (1,5 + 0,8 кг/га)	3,95	2,49
9	Пирафикс (0,8 л/га)	3,57	2,34
10	Оптимо (0,8 л/га)	3,59	2,41
11	Без обработки (контроль)	3,31	2,31
	HCP ₀₅	0,36	0,19

Использование фунгицидов Пирафикс и Оптимо при обработке подсолнечника дало возможность увеличить объем собираемых маслосемян на 0,26 и 0,28 т/га или на 7,9 и 8,5 % соответственно. Статистический анализ вариаций урожайности продемонстрировал, что во всех случаях применения Архитекта в сочетании с сульфатом аммония Турбо, а также Архитекта Прайм, вне зависимости от дозировки, наблюдался статистически значимый рост урожая в сравнении с контрольной группой. Различия в показателях урожайности маслосемян в группах, где применялись фунгициды Пирафикс и Оптимо, по сравнению с контрольной группой (без обработки), не являются значительными.

Уборка урожая маслосемян подсолнечника в 2023-2024 сельскохозяйственном году показала, что все изучаемые варианты обеспечивали прибавку урожая на 0,03-0,24 т/га (1,3-10,4 %). Статистическая обработка данных об урожайности выявила существенное увеличение сбора маслосемян по сравнению с контрольной группой лишь при использовании Архитект Прайм в дозировке 1 кг/га. Другие варианты применения препарата не показали значимых отличий в урожайности, находясь в пределах погрешности эксперимента.

В результате двухлетних испытаний, наивысшие показатели продуктивности семян подсолнечника, а именно 3,26 т/га, 3,22 т/га и 3,22 т/га, были зафиксированы при использовании следующих схем: Архитект Прайм (в дозировке 1,0 кг/га), Архитект Прайм (0,8 кг/га) и сочетание Архитект с сульфатом аммония Турбо (1,5 + 0,8 кг/га) (см. рис. 6). Увеличение урожая, по сравнению с контрольной группой, составило 0,45, 0,41 и 0,41 т/га, соответственно (рис. 7).

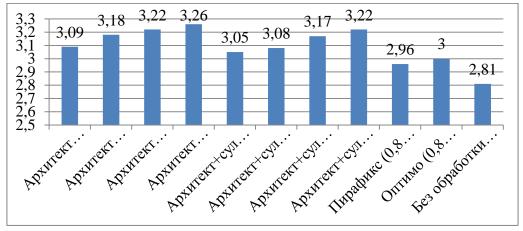


Рисунок 6 - Влияние различных способов защиты растений на среднюю продуктивность семян подсолнечника, 2023-2024 гг.



Рисунок 7 - Прибавка урожая маслосемян подсолнечника в зависимости от варианта применения изучаемых средств защиты растений, 2023-2024 гг.

Выводы. Наши исследования убедительно демонстрируют высокую результативность использования регуляторов роста растений, сочетающих в себе защитные, регулирующие и стимулирующие рост функции, при выращивании подсолнечника в условиях приазовской зоны Ростовской области. Двухгодичное изучение выявило значительные преимущества применения морфорегуляторов роста растений, в частности, вариантов с Архитект Прайм (в дозировке 1,0 кг/га и 0,8 кг/га), а также комбинации Архитект + сульфат аммония Турбо (1,5 + 0,8 кг/га), при их внесении в фазу развития подсолнечника, соответствующую удлинению второго междоузлия (GS 32 по шкале ВВСН).

Список литературы

- 1. Бушнев, А.С. Экономическая эффективность возделывания подсолнечника при различных нормах высева / А.С. Бушнев, К.М. Кривошлыков, Ю.В. Мамырко и др. // Масличные кульуры, 2019. URL: https://journal-oil-crops.ru/wp-content/uploads/2019/12101.pdf (дата обращения: 14.09.2025).
- 2. Доспехов, Б. А. Методика полевого опыта / Б.А Доспехов. М.: Колос, 1985. 351 с. Текст непосредственный.
- 3. Ищенко, А.В. Выращивание высокоолеиновых гибридов подсолнечника с применением регулятора роста Архитект[™] / А.В. Ищенко, Л.В. Андрейченко // Главный агроном, 2021. №
- 2. URL: https://panor.ru/articles/vyrashchivanie-vysokooleinovykh-gibridov-podsolnechnika-s-primeneniem-regulyatora-rosta-arkhitekt (дата обращения: 12.09.2025).
- 4. Карпов, О. Выращивание подсолнечника: технология, рекомендации / О. Карпов, 2020. [Электронный ресурс] URL: https://foodbay.com/wiki/selkhoz-industrija/2020/07/07/vyraschivanie-podsolnechnika-tehnologiya-rekomendacii/ (дата обращения 14.09.2025).
- 5. Лукомец, В.М. Болезни подсолнечника / В.М. Лукомец, Пивень В.Т., Тишков Н.М. Краснодар: БАСФ, 2011. 210 с. Текст непосредственный.
- 6. Методика государственного сортоиспытания сельскохозяйственных культур. Выпуск третий. Под общ. редакцией М.А. Федина. М., 1983. 184 с. Текст: непосредственный.
- 7. Методика проведения полевых агротехнических опытов с масличными культурами / [В. М. Лукомец и др.]; под общ. ред. В. М. Лукомца, чл.-кор. РАСХН, д-ра с.-х. наук Гос. науч. учреждение Всерос. науч.-исслед. ин-т маслич. культур им. В. С. Пустовойта Рос. акад. с.-х. наук. 2-е изд., перераб. и доп. Краснодар: ВНИИМК, 2010. 327 с. Текст непосредственный.
- 8. Мягков, А. Архитект® теперь Вы сами решаете, каким будет растение! Первый рострегулятор с фунгицидным действием на подсолнечнике в России / А. Мягков, 2021. URL: https://www.agro.basf.ru/ru/News-Events/Regional-Advice/Regional-Advices/ARHITEKTR-teper-Vy-sami-resaete-kakim-budet-rastenie-Pervyj-ros.html (дата обращения: 12.09.2025).
- 9. Пойда, В.Б. Результаты изучения производственных систем борьбы с сорняками при выращивании подсолнечника в условиях приазовской зоны Ростовской области [Электронный ресурс] / В.Б. Пойда [и др.] // Современные наукоемкие технологии основа модернизации агропромышленного комплекса: материалы международной научнопрактической конференции, 10 февраля 2021 г. пос. Персиановский: Донской ГАУ, 2021. С. 159-163. URL:

file:///C:/Users/% D0% 95% D0% BB% D0% B5% D0% BD% D0% B0/Downloads/% D1% 81% D0% B1% D0% BE% D1% 80% D0% BD% D0% B8% D0% BA% 20-% 2002% 20(1).pdf (дата обращения 14.09.2025).

References

- 1. Bushnev, A.S. Economic efficiency of sunflower cultivation at different seeding rates / A.S. Bushnev, K.M. Krivoshlykov, Yu.V. Mamyrko et al. // Oil crops, 2019. URL: https://journal-oil-crops.ru/wp-content/uploads/2019/12101.pdf (date of access: 09/14/2025).
- 2. Dospekhov, B. A. Methodology of field experiment / B.A. Dospekhov. Moscow: Kolos, 1985. 351 p. Direct text.

- 3. Ishchenko, A.V. Growing high-oleic sunflower hybrids using the growth regulator Architektm / A.V. Ishchenko, L.V. Andreychenko // Chief Agronomist, 2021. No. 2. URL: https://panor.ru/articles/vyrashchivanie-vysokooleinovykh-gibridov-podsolnechnika-s-primeneniem-regulyatora-rosta-arkhitekt (date of access: 12.09.2025).
- 4. Karpov, O. Sunflower cultivation: technology, recommendations / O. Karpov, 2020. [Electronic resource] URL: https://foodbay.com/wiki/selkhoz-industrija/2020/07/07/vyraschivanie-podsolnechnika-tehnologiya-rekomendacii/ (date of access 14.09.2025).
- 5. Lukomets, V.M. Sunflower diseases / V.M. Lukomets, V. T. Piven, N. M. Tishkov. Krasnodar: BASF, 2011. P.210. Direct text.
- 6. Methodology of state variety testing of agricultural crops. Third edition. General editor M. A. Fedin. Moscow, 1983. P.184. Direct text.
- 7. Methodology of conducting field agrotechnical experiments with oilseeds / [V. M. Lukomets et al.]; general editor V. M. Lukomets, Corresponding Member of the Russian Academy of Agricultural Sciences, Doctor of Agricultural Sciences State Scientific Institution All-Russian Scientific Research Institute of Oil Crops named after V. S. Pustovoit Russian Academy of Agricultural Sciences. 2nd ed., revised and enlarged. Krasnodar: VNIIMK, 2010. 327 p. Direct text.
- 8. Myagkov, A. Architect® now you decide what your plant will be like! The first growth regulator with fungicidal action on sunflower in Russia / A. Myagkov, 2021. URL: https://www.agro.basf.ru/ru/News-Events/Regional-Advice/Regional-Advices/ARHITEKTR-teper-Vy-sami-resaete-kakim-budet-rastenie-Pervyj-ros.html (date of access: 12.09.2025).
- 9. Poyda, V.B. Results of the study of production weed control systems for growing sunflower in the Azov zone of the Rostov region [Electronic resource] / V.B. Poyda [et al.] // Modern science-intensive technologies are the basis for modernization of the agro-industrial complex: materials of the international scientific and practical conference, February 10, 2021 Persianovsky: Donskoy SAU, 2021. P. 159-163. URL: file:///C:/Users/%D0%95%D0%BB%D0%B5%D0%BD%D0%BD%D0%B0/Downloads/%D1%81%D0%B1%D0%BE%D1%80%D0%BD%D0%B8%D0%BA%20-%2002%20(1).pdf (date of access 09/14/2025).

Информация об авторах

Пойда Валерий Борисович, кандидат сельскохозяйственных наук, доцент кафедры «Земледелия и технологии хранения растениеводческой продукции», ФГБОУ ВО «Донской государственный аграрный университет», E-mail: val.poyda@yandex.ru;

Збраилов Михаил Александрович, кандидат сельскохозяйственных наук, доцент кафедры «Земледелия и технологии хранения растениеводческой продукции», ФГБОУ ВО «Донской государственный аграрный университет», E-mail: m-zbr@yandex.ru;

Фалынсков Евгений Михайлович, кандидат сельскохозяйственных наук, доцент кафедры «Земледелия и технологии хранения растениеводческой продукции», ФГБОУ ВО «Донской государственный аграрный университет», E-mail: falynskov.e@mail.ru.

Information about the authors

Poyda Valery Borisovich, associate professor of the Departmentl of Agriculture and Storage Technologies for Plant Products, Don State Agrarian University, E-mail: val.poyda@yandex.ru; **Zbrailov Mihail Aleksandrovich**, associate professor of the Departmentl of Agriculture and Storage Technologies for Plant Products, Don State Agrarian University, E-mail: m-zbr@yandex.ru **Falynskov Evgeniy Mihailovich**, associate professor of the Departmentl of Agriculture and Storage Technologies for Plant Products, Don State Agrarian University, E-mail: falynskov.e@mail.ru.

УДК 636.051

О СОЗДАНИИ ПЛЕМЕННОГО РЕПРОДУКТОРА ООО «ГЕРЕФОРД» ПО РАЗВЕДЕНИЮ КРУПНОГО РОГАТОГО СКОТА ГЕРЕФОРДСКОЙ ПОРОДЫ

Мункуев В.Ч., Каюкова С.Н., Викулина Н.А., Дегтярь А.С., Хорошайло Т.А., Плужников Г.Л.

Аннотация: В работе представлен анализ особенностей разведения крупного рогатого скота герефордской породы в условиях созданного племенного репродуктора ООО «Герефорд», расположенного на территории Забайкальского аграрного института – филиала Иркутского государственного аграрного университета имени А. А. Ежевского. Период исследования охватывает четыре года (с 2019 по 2022) и включает комплексную оценку племенных и продуктивных характеристик всего поголовья. Для достижения объективной оценки использовался широкий спектр методов, включающих в себя комплексную оценку животных, позволяющие оценить их экстерьерные признаки, современные методы иммуногенетического тестирования, а также возможности информационно-аналитической системы «СЕЛЭКС. Мясной скот», предоставляющей мощный инструмент для обработки больших объемов данных о животных. Особое внимание уделено анализу влияния специфических условий содержания и кормления животных в условиях резко континентального климата Восточного Забайкалья, характеризующегося суровыми зимами и засушливым летом, с большими колебаниями Были проанализированы особенности рационов кормления, обеспечения животных необходимым укрытием в зимний период, а также влияние климатических факторов на продуктивность и здоровье скота. Материалы данной статьи представляют собой ценный практический материал, который может быть успешно использован специалистами в области животноводства для дальнейшей оптимизации племенной работы, повышения эффективности разведения герефордского скота не только в Забайкальском крае, но и в других регионах с аналогичными климатическими и хозяйственными условиями, способствуя развитию мясного животноводства и повышению его экономической эффективности.

Ключевые слова: мясное скотоводство, герефордская порода, племенной репродуктор, разведение, коровы, стадо.

ON THE CREATION OF THE BREEDING REPRODUCER LLC «HEREFORD» FOR BREEDING HEREFORD BREED CATTLE

Munkuev V.Ch., Kayukova S.N., Vikulina N.A., Degtyar A.S., Khoroshailo T.A., Pluzhnikov G.L.

Abstract: The paper presents an analysis of the breeding characteristics of Hereford cattle in the conditions of the created breeding farm of Hereford LLC, located on the territory of the Transbaikal Agrarian Institute - a branch of the Irkutsk State Agrarian University named after A. A. Ezhevsky. The study period covers four years (from 2019 to 2022) and includes a comprehensive assessment of the breeding and productive characteristics of the entire herd. To achieve an objective assessment, a wide range of methods was used, including a comprehensive assessment of animals to assess their exterior characteristics, modern methods of immunogenetic testing, as well as the capabilities of the information and analytical system SELEKS, which provides a powerful tool for processing large amount of animal data. Particular attention is paid to the analysis of the influence of specific conditions of keeping and feeding animals in the sharply continental climate of

Eastern Transbaikalia, characterized by harsh winters and dry summers, with large temperature fluctuations. The features of feeding rations, methods of providing animals with the necessary shelter in winter, and the influence of climatic factors on the productivity and health of livestock were analyzed. The materials of this article represent valuable practical material that can be successfully used by specialists in the field of animal husbandry for further optimization of breeding work, increasing the efficiency of breeding Hereford cattle not only in the Trans-Baikal Territory, but also in other regions with similar climatic and economic conditions, contributing to the development of beef cattle breeding and increasing its economic efficiency.

Key words: beef cattle breeding, Hereford breed, breeding farm, breeding, cows, herd.

Введение. Разведение сельскохозяйственных животных в России — это сложная и многоступенчатая система, регулируемая законодательством и строгими правилами, которые делают вход в эту отрасль далеко не таким простым, как может показаться на первый взгляд. Желание начать заниматься скотоводством, сталкивается с множеством препятствий, начиная от земельного вопроса и заканчивая получением необходимых лицензий и разрешений. Однако крупные кластеры, специализирующиеся на мясном скотоводстве, часто включают хозяйства, имеющими статус племенного репродуктора — термин, требующий более подробного объяснения [8].

Согласно Федеральному Закону «О племенном животноводстве», племенной репродуктор – это специализированное хозяйство, занимающееся разведением животных, строго соответствующих стандартам определенной породы. Главная их задача – поддержание и улучшение породных качеств, а также производство высококачественного семенного материала для дальнейшей селекционной работы. Этот закон [3,7] является исчерпывающим источником информации по всем терминам и понятиям, используемым в сфере племенного животноводства. В нем четко отражены все необходимые критерии, которым должны соответствовать животные, технологии содержания, ветеринарные стандарты и многое другое.

Важно понимать разницу между племзаводом и племрепродуктором. Племенной завод ориентирован, прежде всего, на селекционную работу с животными, создание новых заводских линий и улучшение существующих пород. Они являются своеобразными «кузницами» породного совершенства, обеспечивая племенной материал для других хозяйств. Племенной репродуктор, в свою очередь, получает высокопородных животных от племенных заводов и размножает их, стремясь сохранить все желательные характеристики породы — высокую продуктивность, устойчивость к болезням, качество мяса и т.д. [1,4,9].

Актуальность и новизна исследований. За последние годы число племенных хозяйств, занимающихся разведением чистопородных животных, в том числе и мясного скота, сокращается. Поэтому исследование особенностей разведения таких животных приобретает особую значимость [2,5,10]. В рамках проведенного исследования были изучены темпы развития поголовья скота герефордской породы. Это означает, что ученые и практики собрали и проанализировали данные, касающиеся таких показателей, как прибавка в весе, высота в холке, обхват груди и другие параметры, характеризующие рост и развитие животных в течение определенного периода их жизни. Полученные результаты позволяют лучше понять особенности развития герефордов и, вероятно, могут быть использованы для оптимизации методов их разведения и повышения продуктивности в хозяйстве, имеющим статус племенного репродуктора, с дальнейшим ремонтом собственного стада и реализацией племенного материала в другие племенные или товарные хозяйства.

Цель и задачи исследований. Целью работы являлась комплексная оценка племенных и продуктивных качеств крупного рогатого скота герефордской породы в условиях ООО «Герефорд» на базе Забайкальского аграрного института — филиала ФГБОУ ВО «Иркутский государственный аграрный университет им. А. А. Ежевского», для определения генетического потенциала, качества экстерьера, продуктивности и племенной ценности животных при создании высокопродуктивного стада, присвоения хозяйству племенного

статуса и дальнейшего совершенствования племенной работы и повышения эффективности разведения мясного скота в условиях Восточного Забайкалья.

Материал и методы исследования. Материал для исследований был собран по данным бонитировок стада крупного рогатого скота герефордской породы за 2019—2022 гг., которые проводились учеными Забайкальского аграрного института и специалистами учебноопытного хозяйства (УОХ).

Результаты исследований. Общество с ограниченной ответственностью «Герефорд» было создано в условиях материально-технической базы УОХ Забайкальского аграрного института — филиала ФГБОУ ВО «Иркутский государственный аграрный университет имени А.А. Ежевского», в местности, находящейся на севере г. Читы и юге Читинского района 28 декабря 2022 г. Формирование учебно-опытного хозяйства, где расположено ООО «Герефорд» началось с 2000 г., для чего Администрацией Читинского района была выделена земля площадью 1000 га, а также на безвозмездной основе многими хозяйствами Забайкальского края были выделены: крупный рогатый скот различных пород, овцы, козы и лошади.

Основным направлением ООО «Герефорд» является животноводство, хозяйство занимается разведением крупного рогатого скота герефордской породы. Кроме того, данное предприятие выполняет следующие задачи:

- обеспечивает условия для практического обучения студентов;
- производит сельскохозяйственную продукцию на основе использования современных научно-технических достижений и зональных аграрных технологий;
- создает условия для проведения научных исследований, производственных испытаний новых научных разработок;
- производит наукоемкую продукцию: элитные семена зерновых и кормовых культур, племенной молодняк крупного рогатого скота и овец.

Рынки сбыта основной продукции расположены на территории Забайкальского края и Республики Бурятия.

В 2012 г. руководством и специалистами ЗабАИ было принято решение о целесообразности чистопородного разведения крупного рогатого скота герефордской породы и ведения племенной работы. Для этого в племенном заводе «Ононское ОПХ» Шилкинского района было закуплено 20 телок герефордской породы в возрасте 15–16 месяцев и один бык в ГПОУ «Нерчинский аграрный техникум». Через год из СПК племенного завода «Могойтуйский» Могойтуйского района в учебно-опытное хозяйство было завезено три быка-производителя канадской селекции. В том же году из Ононского ОПХ ГУП поступило 2 быка-производителя, в 2017 г. из ООО «Улан» Приаргунского района – 2 головы канадской селекции и в 2021 г. из племенного завода МУП «Нерчинский конезавод» Нерчинского района было завезено 2 быка герефордской породы канадской селекции.

В ООО «Герефорд» созданы все условия для содержания и кормления племенных животных, обеспечивающие реализацию его генетического потенциала и ветеринарное благополучие. В хозяйстве имеется необходимая производственная база для разведения племенного мясного скота, включающая стоянки; склад для хранения кормов; помещения для содержания коров, быков и молодняка; весовое хозяйство; раскол; необходимая техника, а также персонал для ведения племенной работы и обслуживания животных.

В 2022 г. площадь сельскохозяйственных угодий ООО «Герефорд» составила 1229 га, в том числе пашни – 775 га, сенокосов и пастбищ – 454 га, что является предрасполагающим фактором для разведения крупного рогатого скота мясного направления продуктивности в условиях резко континентального климата Восточного Забайкалья. Для обеспечения полноценным кормлением племенного скота, учебно-опытное хозяйство ЗабАИ дополнительно арендует 520 га пастбищ на летне-осенний период, так как из-за малоснежной зимы в Забайкалье, животные круглый год находятся на пастбищном содержании. При рождении телят проводится их взвешивание на электронных весах и

присваивается идентификационный номер методом чипирования и биркования.

Работа по созданию племенного стада осуществляется под руководством научных сотрудников Забайкальского аграрного института — филиала ФГБОУ ВО «Иркутский государственный аграрный университет имени А. А. Ежевского». Ежегодно проводится бонитировка согласно нормам оценки племенных качеств крупного рогатого скота мясного направления продуктивности, утвержденной Министерством сельского хозяйства Российской Федерации.

Оценка экстерьера и типа телосложения производится с помощью мерных инструментов: палки, ленты и циркуля, по принятой в зоотехнии методике. С 2021 г. ведется племенной учет с использованием информационно-аналитической системы «СЕЛЭКС. Мясной скот», результаты бонитировки предоставляются в систему информационного обеспечения по племенному животноводству.

В 2022 г. было пробонитировано всего 220 голов крупного рогатого скота герефордской породы: из них коров — 100 голов, телки старше 2-х лет — 10 голов, телки прошлых лет — 11 голов, телки текущего года рождения — 40 голов; 4 быка-производителя, 10 бычков прошлых лет и 45 бычков текущего года рождения.

По итогам проведенной бонитировки все животные были отнесены к чистопородным, что свидетельствуют о высоком генетическом потенциале и высокой племенной ценности стада. Данные комплексной оценки стада свидетельствуют об удовлетворительном качественном составе скота на предприятии. Из 220 пробонитированных животных к классам элитарекорд, элита и I классу отнесено 100 %. Из 100 коров: 23 головы – к классу элита-рекорд, 40 – к классу элита, что суммарно составляет 63,0 % и 37 голов к I классу – 37,0 %.

Все быки-производители отнесены к классу элита-рекорд и элита. Средняя живая масса быков-производителей в возрасте 3-х лет составляла 754,0 кг, в 4 года — 857,0 и в 5 лет — 935,0 кг. Средняя нагрузка на одного быка-производителя составляет 20 коров. Генеалогическая структура маточного стада представлена заводскими линиями Майер-Верна 88480 — 43 головы, Шатун Д-50 — 35 голов, TRI-ACX-CAN 71838 — 42 головы, TRI-ACX-CAN 71839 — 41 голова.

В рамках подготовки документов для присвоения хозяйству статуса племенного репродуктора, было проведено исследование быков-производителей по качеству потомства. В опыте участвовали бычки в возрасте от 7-ми до 15-ти мес. по показателям живой массы, приростов и оценке экстерьера. Быки-производители проверялись в возрасте 4-х лет со средней живой массой 857,0 кг. Два быка было канадской селекции линий: TRI-ACX-CAN 71838 и TRI-ACX-CAN 71839, один бык принадлежал линии Майер-Верна 88480.

В таблице 1 приведены данные по средней живой массе бычков, полученных от проверяемых быков-производителей, в возрасте 8 и 15 месяцев.

Таблица 1 – Средняя живая масса бычков, n = 10, кг, $M \pm m$

	,			
	Живая масса сыновей			
Поморожани	Бурого 961834	Богатыря 962144	Грозного 976218	
Показатель	(линия TRI-ACX-	(линия TRI-ACX-	(линия Майер-Верна	
	CAN 71838)	CAN 71839)	88480)	
в возрасте 7 мес.	202,31±3,78	196,32±2,94	193,51±1,98	
в возрасте 15 мес.	446,57±3,11	387,48±2,18*	412,76±3,17*	

Примечание: *Р₁≥0,95 (относительно быка Бурого 961934)

Из данных таблицы 1 видно, что в возрасте 7 мес. наиболее крупные бычки были от быка Бурого 961838, их средняя живая масса составила $202,31\pm3,78$ кг. У бычков, рожденных от быка Богатыря 962144, средняя живая масса составила $196,32\pm2,94$ и Грозного $976218-193,51\pm1,98$ кг. В 15-месячном возрасте наибольшей живой массой также отличались бычкипотомки быка Бурого 961834, средний показатель по всем бычкам составил $446,57\pm3,11$, сыновья Грозного 976218 показали лучше результат, чем в возрасте 8 мес., их средняя живая

масса составила $412,76\pm3,17$ кг, наименьшая живая масса была у бычков Богатыря $962144 - 387,48\pm2,18$ кг.

Важными показателями, характеризующими энергию роста животных, являются приросты их живой массы. Среднесуточный прирост бычков-сыновей Бурого 961834 составил 904 г, что является высоким показателем при круглогодовом пастбищном содержании в суровых условиях Забайкалья. Бычки-сыновья Грозного 976218 также имели оптимальный показатель по среднесуточному приросту, который составил 811 г, наименьший прирост был у потомков Бурана 400 Богатыря 962144 – 708 граммов.

Внешний вид животного является существенным показателем при оценке его продуктивности. Многие ученые, такие как П.Н. Кулешов, М.Ф. Иванов и другие, неоднократно доказывали взаимосвязь между внешними признаками животного и его способностью к продуктивному труду. Экстерьер, как отмечал Е.Я. Борисенко, — это внешнее проявление конституции животного, то есть генетически предрасположенного его телосложения и физиологических особенностей организма. Таким образом, анализ экстерьера помогает сформулировать предположение о потенциальной продуктивности животного, хотя и не является единственным критерием оценки [8].

Чтобы иметь более полное представление о росте и развитии подопытного молодняка, нами было изучено изменение типа телосложения по данным измерений статей тела. Характеристика подопытных животных в 8-месячном возрасте по промерам представлена на рисунке.

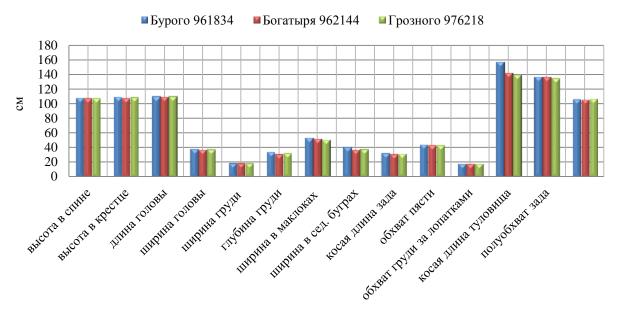


Рисунок – Промеры тела бычков в возрасте 8 мес., см

Анализируя данные рисунка 1, видно, что лучшее развитие тела к 8-месячному возрасту наблюдалось у потомства быка-производителя Бурого 961834. Сыновья этого быка имели превосходство над сверстниками, полученных от двух других быков по всем промерам. Особенно различия отмечены по косой длине зада (0,7 и 1,2 %). К возрасту 15 мес. Экстерьерные показатели были также в пользу быка Бурого 961834, что отражено в таблице 2.

Потомки быка Бурого 961834 имели преимущество над сверстниками от быков Богатыря 962144 по всем промерам, а особенно: глубине груди на 4,6 % ($P_2 \ge 0,99$) и обхвату груди за лопатками на 10,5 % ($P_2 \ge 0,99$). Сыновья Грозного 976218 по экстерьерным показателям также были немного меньше сыновей Бурого 961834. Наибольшей разностью отличия были по промерам ширина в седалищных буграх (на 11,4 %, $P_1 \ge 0,95$) и обхвату груди за лопатками (на 8,9 %, $P_2 \ge 0,99$). Такие данные свидетельствуют о лучшем генетическом наследии и более высокой селекционной ценности Бурого 961834.

Таблица 2 — Промеры тела бычков в возрасте 15 мес, n = 10, см, $M \pm m$

Поморожения	Промеры сыновей быков			
Показатель	Бурого 961834	Богатыря 962144	Грозного 976218	
высота в холке	119,35±0,42	119,02±0,36	119,21±0,23	
высота в спине	119,57±0,39	119,24±0,43	119,60±0,25	
высота в крестце	121,42±0,96	120,31±0,76	121,12±0,64	
длина головы	41,32±0,63	41,95±0,19	41,29±0,74	
ширина головы	21,81±0,61	20,56±0,55	$20,17\pm0,38$	
ширина груди за лопатками	48,16±1,19	45,81±0,92	46,19±0,37	
глубина груди	61,25±2,44	58,54±0,65**	59,37±2,13	
ширина в маклоках	42,36±0,41	39,66±0,39	40,28±1,28	
ширина в сед. буграх	35,61±0,29	32,11±0,83	31,96±2,17*	
косая длина зада	47,15±1,56	44,29±0,64	45,18±0,22	
обхват пясти	20,23±0,15	20,04±0,89	$20,12\pm0,31$	
обхват груди за лопатками	165,47±3,46	149,68±0,28**	151,19±1,17**	
косая длина туловища	148,51±3,55	147,16±1,91	145,91±2,73	
полуобхват зада	112,58±5,88	110,56±2,46	110,97±4,13	

Примечание: $*P_1 \ge 0.95$, $**P_2 \ge 0.99$, $***P_3 \ge 0.999$ (относительно быка Бурого 961934)

При проведении комплексной оценки животных были получены следующие данные: живая масса трехлетних коров составила 450 кг. К четырем годам вес увеличился до 516 кг, а к пяти годам и старше достигал 545 кг. Средняя масса телят в возрасте 205 дней (показатель молочности коровы) была на уровне 188 кг после первого отела, 192 кг после второго отела, и 197 кг после третьего и последующих отелов. Это указывает на повышение молочности с каждым последующим отелом. В 2022 г. на каждые 100 коров и нетелей родилось 85 телят. Это означает, что показатель стельности составил 85 %. Данные передаются в РИСЦ Забайкальский центр племенного животноводства, затем в ФГБНУ «Всероссийский научно-исследовательский институт племенного дела» Министерства сельского хозяйства РФ.

В настоящее время в ООО «Герефорд» создано высокопродуктивное стадо племенных животных герефордской породы. Животные имеют хорошо развитую глубокую грудь, правильно поставленные конечности, ровную широкую спину, развитое туловище. Масть животных типичная для породы. Племенной репродуктор осуществляет выращивание племенных животных для комплектования собственного стада, реализации юридическим лицам и индивидуальным предпринимателям, осуществляющим сельскохозяйственное производство.

В 2022 г. молодняк не реализовывался из-за ремонта собственного стада. Хозяйство с 2021 г. обеспечивает проведение иммуногенетического тестирования на достоверность происхождения по полным семьям (отец — мать — потомок). Достоверность происхождения в 2022 г. составила 75 %. В апреле 2023 г. произведена иммуногенетическая аттестация быкопроизводящих животных.

ООО «Герефорд» использует официально принятые методы племенного учета идентификации, контроля продуктивности, определения племенной ценности животных и реализации племенной продукции. Предприятие на протяжении нескольких лет участвует в реализации проекта по идентификации племенного крупного рогатого скота и создании региональной базы данных скота мясных пород. В информационную систему внесены сведения о 100 коровах, 4-х быках-производителях, 10-ти телках старше 2 лет, 11-ти телках прошлых лет, 45-ти телках, 40 бычках текущего года рождения и 10-ти бычках прошлых лет.

За последний календарный год по результатам деятельности ООО «Герефорд» в области племенного животноводства установлено соответствие минимальным требованиям, предъявляемых к племенным репродукторам про разведению крупного рогатого скота герефордской породы в соответствии с Правилами определения видов организаций в области племенного животноводства, утвержденными Приказом Министерства сельского хозяйства

Российской Федерации от 02.06.2022 г. № 336 «Об утверждении требований к видам племенных хозяйств» [6].

В ООО «Герефорд» с 2020 г. регулярно осуществляется проверка быков-производителей по качеству потомства, что является наиболее точным методом определения их фактической племенной ценности. Использование ее результатов в селекционной работе позволяет интенсивно использовать лучших в племенном отношении производителей. В 2022 г. с проверяемыми быками по качеству потомства было случено 46 коров или 47,0 % от всего маточного поголовья.

Выводы. Таким образом, ООО «Герефорд» соответствует требованиям, предъявляемым к племенным репродукторам по разведению крупного рогатого скота герефордской породы, установленным Правилами в области племенного животноводства «Виды организаций, осуществляющих деятельность в области племенного животноводства», утвержденными Приказом Министерства сельского хозяйства Российской Федерации от 02.06.2022 г. № 336, а также обеспечивает ветеринарное благополучие хозяйства, в соответствии с заключением Государственной ветеринарной службы Забайкальского края от 21.06.2023 г. № 478 об эпизоотическом благополучии хозяйства.

Список литературы

- 1. Бахарев А.А., Литкевич А.И., Бугасов Б.Ж. Анализ мясной отрасли скотоводства Уральского федерального округа Российской Федерации // Вестник Бурятской государственной сельскохозяйственной академии имени В.Р. Филиппова. 2019. № 2(55). С. 134—140.
- 2. Гостева Е.Р., Коник Н.В., Краснова О.А. Краснова и др. Производственная целесообразность длительного использования маточного поголовья крупного рогатого скота мясных пород // Вестник КрасГАУ. 2024. № 9(210). С. 128–134.
- 3. Комлацкий В.И., Хорошайло Т.А. Технология предприятий по переработке животноводческой продукции: учебник. Санкт-Петербург, 2020. 216 с.
- 4. Племенное животноводство, или как стать племенным репродуктором. https://agrovesti.net/lib/advices/plemennoe-zhivotnovodstvo-ili-kak-stat-plemennym-reproduktorom.html
- 5. Подойницына Т.А., Виноградов И.И. Казахский белоголовый скот Хакасии в условиях Забайкалья // Вестник Бурятской государственной сельскохозяйственной академии им. В.Р. Филиппова. 2008. № 2(11). С. 79–83.
- 6. Приказ от 02.06.2022 г. № 336 Министерства сельского хозяйства Российской Федерации «Об утверждении требований к видам племенных хозяйств». https://normativ.kontur.ru/document?moduleId=1&documentId=430575
- 7. Федеральный закон от 3 августа 1995 г. № 123-ФЗ «О племенном животноводстве». https://base.garant.ru/10107888/
- 8. Хакимов И.Н., Коростелева Л.А., Акимов А.Л. Совершенствование герефордской породы мясного скота в условиях Среднего Поволжья Инновационные технологии производства, хранения, переработки и экспертизы сельскохозяйственного сырья и продуктов питания: сборник научных трудов национальной научно-практической конференции с международным участием, посвященной 70-летию В.А. Милюткина, Самара, 28 апреля 2021 г. Кинель: Самарский государственный аграрный университет, 2021. С. 119—122.
- 9. Хорошайло Т.А., Алексеева Ю.А. Информационные технологии в зоотехнии / Санкт-Петербург: Издательство «Лань», 2022. 124 с.
- 10. Podoinitsyna T.A., Kozub Yu.A. Regular changes in hematological and biochemical indicators and immunogenetic certification of yak blood introduced in new conditions // IOP Conference Series: Earth and Environmental Science, Krasnoyarsk, 20–22 июня 2019 года. Krasnoyarsk Science and Technology City Hall of the Russian Union of Scientific and Engineering Associations. Vol. 315. Krasnoyarsk: Institute of Physics and IOP Publishing Limited, 2019. P. 42007.

References

- 1. Bakharev A.A., Litkevich A.I., Bugasov B.Zh. Analysis of the meat industry of cattle breeding in the Ural Federal District of the Russian Federation // Bulletin of the Buryat State Agricultural Academy named after V.R. Filippov. 2019. No. 2 (55). pp. 134–140.
- 2. Gosteva E.R., Konik N.V., Krasnova O.A. Krasnova et al. Production feasibility of long-term use of breeding stock of beef cattle // Bulletin of KrasSAU. 2024. No. 9 (210). pp. 128–134.
- 3. Komlatsky V.I., Khoroshailo T.A. Technology of enterprises for processing livestock products: textbook. St. Petersburg, 2020. pp.216.
- 4. Breeding livestock, or how to become a breeding reproducer. https://agrovesti.net/lib/advices/plemennoe-zhivotnovodstvo-ili-kak-stat-plemennym-reproduktorom.html
- 5. Podoinitsyna T.A., Vinogradov I.I. Kazakh white-headed cattle of Khakassia in the conditions of Transbaikalia // Bulletin of the Buryat State Agricultural Academy named after V.R. Filippov. 2008. No. 2 (11). pp. 79–83.
- 6. Order of 02.06.2022 No. 336 of the Ministry of Agriculture of the Russian Federation «On approval of requirements for types of breeding farms». https://normativ.kontur.ru/document?moduleId=1&documentId=430575
- 7. Breeding livestock, or how to become a breeding reproducer. https://agrovesti.net/lib/advices/plemennoe-zhivotnovodstvo-ili-kak-stat-plemennym-reproduktorom.html
- 8. Khakimov I.N., Korosteleva L.A., Akimov A.L. Improving the Hereford breed of beef cattle in the conditions of the Middle Volga region Innovative technologies for the production, storage, processing and evaluation of agricultural raw materials and food products: collection of scientific papers of the national scientific and practical conference with international participation dedicated to the 70th anniversary of V.A. Milyutkin, Samara, April 28, 2021. Kinel: Samara State Agrarian University, 2021. pp. 119-122.
- 9. Khoroshailo T.A., Alekseeva Yu.A. Information technologies in animal husbandry / St. Petersburg: Lan Publishing House, 2022. pp.124.
- 10. Podoinitsyna T.A., Kozub Yu.A. Regular changes in hematological and biochemical indicators and immunogenetic certification of yak blood introduced in new conditions // IOP Conference Series: Earth and Environmental Science, Krasnoyarsk, 20–22 июня 2019 года. Krasnoyarsk Science and Technology City Hall of the Russian Union of Scientific and Engineering Associations. Vol. 315. Krasnoyarsk: Institute of Physics and IOP Publishing Limited, 2019. P. 42007.

Сведения об авторах:

Мункуев Владимир Чимитович — кандидат сельскохозяйственных наук, ведущий специалист отдела НИР; Забайкальский аграрный институт — филиал ФГБОУ ВО «Иркутский государственный аграрный университет имени А.А. Ежевского», E-mail: zabai@mail.ru;

Каюкова Светлана Николаевна — кандидат биологических наук, заместитель директора по учебной работе, научной и международной деятельности Забайкальский аграрный институт — филиал ФГБОУ ВО «Иркутский государственный аграрный университет имени А.А. Ежевского», E-mail: nauka zabai@mail.ru;

Викулина Наталья Александровна — кандидат биологических наук, декан факультета Агроресурсы и управление; Забайкальский аграрный институт — филиал ФГБОУ ВО «Иркутский государственный аграрный университет имени А.А. Ежевского»; E-mail: zabai@mail.ru;

Дегтярь Анна Сергеевна — кандидат сельскохозяйственных наук, доцент кафедры разведения с.-х. животных, частной зоотехнии и зоогигиены им. ак. П.Е. Ладана; ФГБОУ ВО «Донской государственный аграрный университет»; E-mail: <u>annet c@mail.ru</u>;

Хорошайло Татьяна Анатольевна – кандидат сельскохозяйственных наук, доцент кафедры частной зоотехнии, ФГБОУ ВО «Кубанский государственный аграрный университет имени

И.Т. Трубилина», E-mail: tatyana_zabai@mail.ru;

Плужников Григорий Львович — магистрант института ветеринарной медицины, зоотехнии и биотехнологии, ФГБОУ ВО «Кубанский государственный аграрный университет имени И.Т. Трубилина», E-mail: tatyana_zabai@mail.ru.

Information about the authors:

Munkuev Vladimir Chimitovich – Candidate of agricultural sciences, leading specialist of the research and development department; Trans-Baikal agrarian institute – branch of the federal state budgetary educational institution of higher education Irkutsk State Agrarian University named after A.A. Ezhevsky; E-mail: nauka_zabai@mail.ru;

Kayukova Svetlana Nikolaevna – candidate of biology sciences, deputy director for academic affairs, scientific and international activities; Trans-Baikal agrarian institute – branch of the federal state budgetary educational institution of higher education Irkutsk State Agrarian University named after A.A. Ezhevsky; E-mail: nauka_zabai@mail.ru;

Vikulina Natalya Aleksandrovna – candidate of biology sciences, dean of the faculty of agricultural resources and management; Trans-Baikal Agrarian Institute – branch of the federal state budgetary educational institution of higher education Irkutsk State Agrarian University named after A.A. Ezhevsky; E-mail: zabai@mail.ru;

Degtyar Anna Sergeevna – candidate of agricultural sciences, associate professor of the department of breeding of agricultural animals, private zootechnics and zoohygiene named after academician P.E. Ladan; Don State Agrarian University, E-mail: annet_c@mail.ru;

Khoroshailo Tatyana Anatolyevna – candidate of Agricultural Sciences, associate professor of the department of private zootechnics and pig breeding, Kuban State Agrarian University named after I.T. Trubilin, E-mail: tatyana zabai@mail.ru;

Pluzhnikov Grigory Lvovich – Master's student of the Institute of Veterinary Medicine, Animal Science and Biotechnology, Federal State Budgetary Educational Institution of Higher Education Kuban State Agrarian University named after I.T. Trubilin, E-mail: tatyana_zabai@mail.ru.

4.2.4 ЧАСТНАЯ ЗООТЕХНИЯ, КОРМЛЕНИЕ, ТЕХНОЛОГИИ ПРИГОТОВЛЕНИЯ КОРМОВ И ПРОИЗВОДСТВА ПРОДУКЦИИ ЖИВОТНОВОДСТВА

УДК 631.95:636.085:636.087.2

КОНФИГУРАЦИЯ ПАРАМЕТРОВ ПИТАТЕЛЬНОСТИ СУХОЙ РАСТВОРИМОЙ КОРМОВОЙ РАСТИТЕЛЬНОЙ СМЕСИ ПОСЛЕ МИКРОБИОЛОГИЧЕСКОЙ КОНВЕРСИИ

Козлов Е.Е., Миронова О.А.

Аннотация: Потребность снижения себестоимости продукции актуальна и в социально-значимых сферах. Несмотря на государственные дотации и всестороннюю изученность, молочная отрасль скотоводства в части экономической деятельности относится к венчурной категории инвестиций и имеет тенденцию к сохранению статуса. Необходимость высокотехнологичного обеспечения данного направления во многом биологического многогранностью организма, в частности потенциалом крупного рогатого скота, на котором основывается весь производственный процесс. На этом фоне, сопоставленным со стимуляцией ценовой конкурентоспособности выходного сырья, снижение стоимости основных ресурсных средств требует непрерывной актуализации с учетом локальных возможностей предприятия и конъюнктуры рынка. Сокращение в рационе молодняка товарного молока приносит высокую рентабельность, но допустимость подобных приемов возможна лишь за счет применения дорогостоящих ЗЦМ. Разработанная опытная сухая растворимая растительная смесь показала перспективные результаты при адресном использовании в схеме кормления телят. Происхождение её компонентного состава не позволяет заместить натуральный секрет и его искусственные аналоги на всех возрастных этапах. Эффективным решением стала микробиологическая обработка субстрата на стадии производства, что в свою очередь является экологически методом, исключающим факторы негативного влияния синтетических компонентов промышленного происхождения. Изменения конфигурации энергетических параметров достигли 23%, что детерминировано значением 1,43 ЭКЕ ферментированных образцов, при 1,5 ЭКЕ в принятом к сравнению цельнозаменителе. Результат биоконверсии по отношению к нативным пробам превалировал ростом средней концентрации сырого протеина на 79 г/кг (7,9%), моно- и дисахаридов на 65 г/кг (6,5%), сырого жира -12 г/кг (1,2%), крахмала — 87 г/кг (8,7%); деструкцией клетчатки на 121 г/кг (12,1%). Помимо этого, зафиксирована положительная трансформация уровня витаминов группы В и Е от 115% до 170%, девяти незаменимых аминокислот в среднем на 22,5%.

Ключевые слова. Микробиологическая ферментация, закваска Леснова, параметры нутриентов, заменитель цельного молока, белково-энергетическая недостаточность.

CONFIGURATION OF NUTRITION PARAMETERS WITH DRY SOLUBLE FEED VEGETABLE MIXTURE AFTER MICROBIOLOGICAL CONVERSION

Kozlov E.E., Mironova O.A.

Abstract. The need to reduce the cost of production is also relevant in socially significant areas. Despite government subsidies and comprehensive study, the dairy industry of cattle breeding in terms of economic activity belongs to the venture category of investments and tends to maintain its status. The need for high-tech support for this area is largely due to the versatility of the living biologicals, in particular the breed potential of cattle, on which the entire production process is based. Against this background, compared with the stimulation of price competitiveness of output raw materials, reducing the cost of basic resources requires continuous updating, taking into

account the local capabilities of the enterprise and the market situation. Reducing commercial milk in the diet of young animals brings high profitability, but the admissibility of such techniques is possible only through the use of expensive milk replacers. The developed experimental dry soluble plant mixture showed promising results when used specifically in the calf feeding scheme. The origin of its component composition does not allow replacing the natural secret and its artificial analogues at all age stages. An effective solution was microbiological treatment of the substrate at the production stage, which in turn is an environmentally friendly method that excludes the factors of negative influence of synthetic components of industrial origin. Changes in the configuration of energy parameters reached 23%, which is determined by the value of 1.43 EFU of fermented samples, with 1.5 EFU in the whole substitute accepted for comparison. The result of bioconversion in relation to native samples prevailed by the growth of the average concentration of crude protein by 79 g/kg (7.9%), mono- and disaccharides by 65 g/kg (6.5%), crude fat - 12 g/kg (1.2%), starch – 87 g/kg (8.7%); destruction of fiber by 121 g/kg (12.1%). In addition, a positive transformation of the level of vitamins B and E from 115% to 170%, nine essential amino acids by an average of 22.5% was recorded.

Keywords. Microbiological fermentation, Lesnov's starter, nutrient parameters, whole milk substitute, protein-energy malnutrition.

Введение. Ведущие позиции среди товаров первой необходимости занимает категория продовольственного назначения, что обусловлено физиологическими потребностями организма человека, направленными на поддержание констант систем жизнеобеспечения. Коровье молоко - одна из самых ценных биологически жидкостей как для телят, так и для человека [11]. Приемлемые в большей степени в животноводстве искусственные заменители несмотря на широкие возможности промышленных технологий и длительную индустриализацию аграрного сектора не сопоставимы с секретом молочной железы по физико-химическим свойствам. Наряду с легко ассимилируемыми нутриентами натуральный состав несет в себе гормоны и иммунные факторы в форме глобулярных белков [10, 3, 1].

Рост населения с низким уровнем дохода расширяет границы социальной стратификации и усиливает давление на сферы продовольственного обеспечения. Значимая локальная роль молока в питании людей и кормлении молодняка - один из аспектов многофакторного влияния на стоимость данного продукта [7], и необходимости кардинальных изысканий в скотоводческом секторе [13]. Рациональное кормление в натальном и раннем постнатальном возрасте во многом определяет продуктивность в долгосрочной перспективе. Оптимизация расхода молока как ресурсной единицы в схеме кормления получила распространённый характер среди хозяйств. Ранняя адаптация молодняка к грубым растительным компонентам безусловно имеет ряд неоспоримых приоритетных качеств, обусловленных видовыми структурно-функциональными особенностями жвачных. Неоднозначное мнение имеет снижению потребления концентратов при наличии высокопитательному секрету молочной железы. Вместе с тем, достоверно установлен положительный результат позднего съёма с выпойки относительно динамики роста и устойчивости к заболеваниям [14]. Но среди скотоводческих предприятий повсеместно отказываются от кормовых схем с повышенным расходом натурального секрета, особенно остро проблема распределения стоит в хозяйствах с молочным направлением специализации. Высокий ценовой составляющих альтернативу уровень заменителей оказывает соответствующее давление на критерий выбора в пользу сокращения периода выпойки, в частности, его количественных характеристик [12]. Достижение номинальных продуктивных качеств у животных имеет многофакторное влияние. Степень зависимости их уровня неразрывно коррелирует с кормовым аспектом на всех этапах онтогенеза особей наравне с селекционным потенциалом и сохранностью. Огромную роль в реализации работы в данном направлении несет в себе именно адресное кормление во все возрастные периоды. При этом в большинстве хозяйств производственные факторы [9] фуражного обеспечения не удовлетворяют критерии физиологических потребностей организма животных. Финансовые

ресурсы подавляющего числа скотоводческих хозяйств не обеспечивают возможность поддержания удовлетворительной кормовой базы. Негативное влияние санкций на аграрный сектор затронуло и рынок ЗЦМ, подстегнув рост их стоимости и снижение в ассортиментной линейке высококачественных продуктов. Зависимость молодняка крупного рогатого скота от натурального секрета вымени по мере роста естественным образом снижается, но не уменьшается положительное влияние длительности молочного периода. Ярким оценочным маркером возможности его сокращения служит динамика развития и склонность к потреблению растительных кормовых масс молодняком. Очевидно, что структура рациона с ЗЦМ имеет неоспоримые преимущества в постоянстве состава, изученности его влияния, простоты применения и хранения в отличие от биологического секрета, но необходимо, чтобы его кормовые свойства были номинально равнозначны, либо превосходили аналогичные значения молока. При этом достижение устойчивого уровня развития, сопоставимого со сверстниками, получающими натуральную жидкость в большинстве случаев невозможно, по причине отсутствия в искусственных смесях иммуно-гормональной В критический системы [6, возрастной период, характеризующийся морфофункциональными метаморфозами в желудке телят, определяющими дальнейший присущий данному виду полигастричный тип пищеварения, исключение молока с их заменой на растительные компоненты повышает риск развития алиментарной патологии [2].

Актуальность. Нестандартным аспектом ведения скотоводства установлена низкая интенсивность трансформации энергии питательных веществ корма в энергию роста. Особенностью молочной ветви данного сектора является и меньшая стоимость реализуемого сырья относительно мясного направления. Рациональное использование кормовых ресурсов, направленных на устранение негативных производственных факторов, требует учета биологических закономерностей функционирования органных систем организма на фоне его общего развития. Сокращение затрат на кормление имеет колоссальный единовременный экономический потенциал, но в случае его сопровождения спадом динамики роста и формирования молодняка, коррелирующего с вариабельным моментом наступления продуктивного возраста, определяет короткий период хозяйственного использования особей и как следствие конечную финансовую неэффективность. Решение этого вопроса важно не только в скотоводстве, но и для других животноводческих направлений. Неясность в регуляции производственных и монетарных механизмов вносит в сложившуюся проблему неразрешимость и конфронтационный характер в большинстве внутриструктурных ступеней деятельности, подтверждая актуальность проводимых исследований.

Научная новизна. Установлено влияние микробиологической обработки закваской Леснова на альтернативную к классическим заменителям цельного молока опытную смесь с растительным составом фуражного качества. Определены показатели, характеризующие её питательную ценность в нативном и трансформированном микроорганизмами состоянии, проведена оценка их динамики, в том числе в сравнении со стабильными промышленными образцами ЗЦМ.

Цель и задачи исследования. Цель исследования — установить параметры составных нутриентов сухой растворимой растительной смеси в нативном и ферментированном микробиологическим методом состоянии на фоне противопоставленного аналитического рассмотрения аналогичных показателей заменителя цельного молока.

Условия, материалы и методы исследования. Проектная разработка сухой растворимой кормовой растительной смеси, направленной на альтернативную субституцию дорогостоящего заменителя цельного молока в рационе молодняка крупного рогатого скота постнатального периода, определена предметом проведения изысканий. Составные исследования проведены в части изготовления опытных образцов смеси в хозяйстве с молочно-товарным скотоводческим и растениеводческим профилями, экспериментальные испытания в условиях аккредитованной лаборатории. Установлен уровень концентрации нутриентов в пробах от нативных (n=20) и ферментированных с использованием закваски Леснова (n=20) составов. Наряду с этим зафиксированы изменения в содержании

микроэлементов и аминокислот. Комплексные исследования были также реализованы детально-направленной оценкой питательности, рассмотренной параллельно с показателями цельнозаменителя. Актуальные потребности, подкрепленные возможностью ресурсного обеспечения из смежной сферы деятельности хозяйства, детерминировали специфику рецепта альтернативной смеси: овёс — 340~г/кг, пшеница — 220~г/кг, ячмень — 200~г/кг, жмых подсолнечный — 40~г/кг, шрот сои — 80~г/кг, отруби пшеничные — 100~г/кг, соль — 8,5~г/кг, мел — 10~г/кг, витамины группы В — 0,025~г/кг, А — 0,1~г/кг. Растительная часть подвергалась трансформации путём внесения микроорганизмов на фазе твердого субстрата (измельченной фракции $\le 0,16~\text{мм}$). Остальные элементы в порошкообразной форме вносились по завершении биохимического процесса.

Результаты исследования. Кормовая ценность проб интактной к микробиологическому воздействию сухой растворимой растительной смеси на сопоставленном фоне с показателями заменителя цельного молока представлена в таблице 1.

Таблица 1 – Значения параметров кормовой ценности нативной сухой растворимой растительной смеси и заменителя цельного молока, % (М±m).

Hayrayanayanayanayana	Результат			
Наименование исследуемого нутриента	Заменитель цельного	Сухая растворимая кормовая		
путриспта	молока	растительная смесь		
Сырой протеин, %	$20,00\pm0,15$	15,05±1,21*		
Углеводы, %	47,00±0,08	54,41±0,50 *		
из них: крахмал, %	-	29,61±0,66		
моно- и дисахариды, %	32,00±0,10	1,96±0,61***		
клетчатка, %	1,00±0,06	14,62±0,98***		
Сырой жир, %	16,00±0,12	4,41±1,43***		
ЭКЕ	1,50	1,10*		

Достоверность: *p <0,05; **p <0,01; ***p <0,001.

Отличительным маркером ЗЦМ к растительной смеси является стабильность и минимальная вариабельность состава по исследуемым нутриентам. Безусловно более низкая компенсируется большим объёмом рационе функционирования полигастричного желудка жвачных [4], но факт того, что энергетический уровень заменителя превосходит показатель опытного аналога на 26,6%, подтверждает необходимость дополнительного обогащения последнего. По концентрации сырой протеин ниже на 5%, жир на 11,6%, моно- и дисахариды на 30,1%. Негативным фактором, обусловленным составляющей растительного происхождения, зарегистрирован высокий уровень клетчатки в опытных образцах смеси, на 13,6% превышающий значения ЗЦМ. Основываясь на том, что сахара имеют огромную роль в обеспечении энергией растущего организма молодняка и являются приоритетным субстратом у микроорганизмов в развивающихся преджелудках, можно судить о их низкой концентрации в обоих представленных кормовых составах. В процессе пищеварения организм телят ассимилирует до четырехсот пятидесяти грамм лактозы, что обуславливает необходимость повышения уровня концентрации простых сахаров из группы дисахаридов в опытной смеси.

Результат воздействия микроорганизмов на растительный кормовой субстрат сложился следующим образом (рисунок 1).

Доля сырого протеина (СП) возросла в среднем на 79 г/кг (р <0,001). Данная тенденция детерминирована микробным белком, уровень диссимиляции которого соответствует молочному и имеет структурно-свойственный порядок организации животного типа с более высоким критерием переваримости к растительным полипептидным органическим соединениям до 35%. В свою очередь полученные результаты на треть определяют дальнейшую протеиновую ценность, сопоставимую с натуральным секретом вымени, что немаловажно для альтернативной смеси, направленной на его же замещение. Характер

результата микробиологической ферментации превалировал, в том числе, в сторону повышения средних значений содержания моно- и дисахаридов на 65 г/кг (р <0,001), сырого жира (СЖ) на 12 г/кг (р <0,01), крахмала — 87 г/кг (р <0,01). Деструктивное следствие ферментации в отношении клетчатки определило снижение её доли на 121 г/кг (р <0,001), что стало в свою очередь пиковым значением отклонений от нативных показателей к положительному уровню.

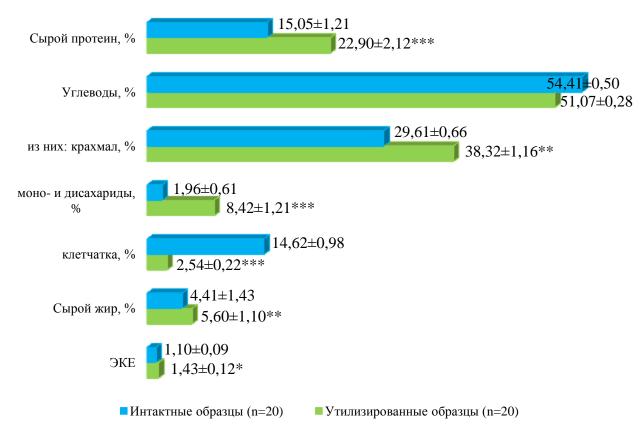


Рисунок 1 — Изменение содержания питательных веществ в образцах сухой растворимой растительной смеси после твердофазной микробиологической ферментации, % ($M\pm m$) Достоверность: *p <0,05; **p <0,01; ***p <0,001.

Таким образом, биоконверсия обеспечила стабилизацию сухой растворимой смеси по СП, их показатели превысили концентрацию в ЗЦМ на 2,9% соответственно. Но содержание моно-, дисахаридов и сырого жира по-прежнему осталось в категории с меньшей градацией на 23,5% и 10,35%. Полученные сведения позволят скорректировать компонентный состав, а, следовательно, повысить эффективность применения. Вместе с тем, возросла энергетическая питательность, в ферментированных образцах она составила 1,43 ЭКЕ (р <0,05), то есть на 23% выше по отношению к нативным образцам. Относительно ЗЦМ разница сократилась на 22%: с 26,6% до 4,6% и стала недостоверной.

Следует учесть, что выпойка смеси растительного происхождения приоритетна в составе обрата, что означает дополнительные 0,14 ЭКЕ на один литр. Но данный факт не может быть интерпретирован питательной ценностью исследуемых образцов корма. Обоснованным результатом допустимо считать критерий достижения дополнительных 50,8 ЭКЕ из расчета на одну голову в период молочной выпойки посредством твердофазной микробиологической ферментации растворимой растительной смеси.

Вместе с испытаниями по определению концентрации основных питательных веществ проведен лабораторный анализ содержания микронутриентов (таблица 2).

Максимальный масштаб микробиологической модуляции зафиксирован в концентрации витаминов. Содержание ретинола, биотина и фолиевой кислоты не имели достоверных отличий к нативным образцам, положительная динамика тиамина составила 142%,

рибофлавина — 135%, никотиновой кислоты — 167%, холина — 115%, пантотеновой кислоты — 130,4%, адермина — 165%, токоферола — 170%. Таким образом, уровень представленных групп органических соединений вырос от 2,15 до 2,7 раз (р <0,001), что вполне способно удовлетворить потребности формирующегося организма теленка. При аналитическом рассмотрении нельзя не выделить и тот факт, что в кормовой растворимой смеси присутствуют компоненты, имеющие как критически низкие показатели представленных групп витаминов, так и характеризующиеся их отсутствием, в частности пшеничные отруби, подсолнечный жмых и шрот сои, общая доля которых в кормовой растворимой смеси составляет 22%. Полученная формация свидетельствует о возможности исключения дорогостоящих синтетических микронутриентов промышленного происхождения из ферментируемой смеси, а именно группы А и В, с закупочной стоимостью одного килограмма 3055,00 и 2980,00 рублей соответственно [5]. Стоит отметить и фуражный критерий используемых компонентов, повышение класса качества которых за счет замещения сырьём продовольственной категории не имеет рационального значения.

Таблица 2 — Влияние микробиологической ферментации на содержание микронутриентов (мг/кг) и аминокислот (г/кг), ($M\pm m$)

на содержание микронутри	Образцы		
Исследуемый показатель	Нативные	Ферментированные	
Витамины			
Ретинол (А), мг/кг	$0,015\pm0,01$	0,017±0,01	
Тиамин (B_1), мг/кг	$2,71\pm0,02$	6,55±0,28***	
Рибофлавин (В2), мг/кг	$0,93\pm0,06$	2,18±0,14***	
Никотиновая кислота (В3), мг/кг	32,11±0,26	85,73±0,32***	
Холин (B_4), мг/кг	575,42±1,44	1237,15±0,63***	
Пантотеновая кислота (В5), мг/кг	6,87±0,16	15,82±0,48***	
Адермин (B_6), мг/кг	2,54±0,22	6,73±0,11***	
Биотин (В ₇), мг/кг	0.81 ± 0.06	0,92±0,08	
Фолиевая кислота (В9), мг/кг	$0,21\pm0,02$	0,18±0,01	
Токоферол (Е), мг/кг	$16,23\pm0,18$	43,82±0,51***	
Аминокислоты			
Валин, г/кг	$3,81\pm0,12$	4,62±0,19*	
Гистидин, г/кг	$1,35\pm0,02$	1,64±0,07*	
Изолейцин, г/кг	3,12±0,11	3,76±0,15*	
Лейцин, г/кг	5,87±0,24	7,29±0,25*	
Лизин, г/кг	1,92±0,14	2,13±0,12*	
Метионин, г/кг	1,14±0,08	1,42±0,05**	
Треонин, г/кг	2,26±0,24	2,78±0,16*	
Триптофан, г/кг	$0,97\pm0,06$	1,22±0,04**	
Фенилаланин, г/кг	$4,34\pm0,28$	5,16±0,26*	

Достоверность: p < 0.05; p < 0.01; p < 0.01.

Такое понятие, как отсутствие незаменимых аминокислот для жвачных, не может быть распространено на молодняк с формирующейся пищеварительной системой на структурном и функциональном уровнях. Особенно переходный период, связанный с изменением рациона, требователен к содержанию данных белковых соединений в смеси, предназначенной для выпойки. Ферментированные образцы по девяти исследуемым группам превосходили интактные к биологической обработке в среднем на 22,5%: по концентрации валина – 21,5% (р <0,05); гистидина – 22% (р <0,05); изолейцина – 20,7% (р <0,05); лейцина – 24,2% (р <0,05); лизина – 20,7% (р <0,05); метионина – 25% (р <0,01); треонина – 23,3% (р <0,05); триптофана – 26,2% (р <0,01); фенилаланина – 18,9% (р <0,05).

Консолидация полученных результатов позволяет судить об утилитарном влиянии биоферментации с использованием закваски Леснова на растительный субстрат кормовой смеси в качестве биологического механизма инверсии питательных веществ. Микробиологическая твердофазная ферментация в отличии от альтернативного кислотного гидролиза не несет в себе угрозы здоровью животных и экологии окружающей среды.

Выводы. Сухая растворимая смесь с растительным компонентным составом в оценочном критерии к заменителю цельного молока имеет белково-энергетическую недостаточность в 0,4 ЭКЕ с девиацией по показателям от 5 до 30,1%. Биоконверсия нативного кормового субстрата установлена в параметрах компенсаторной эскалации концентрации по ключевым позициям нутриентов: сырой протеин на 7,9%; моно- и дисахариды на 6,5%; сырой жир на 1,2%. Деструктивное сокращение клетчатки составило 12,1%. Отклонение по показателю оценки энергетической питательности снизилось на 23% и определено значением 1.43 ЭКЕ. Наряду с этим применение микробиологической ферментации с использованием закваски Леснова в отношении корректировки кормовой ценности опытной растительной смеси, составляющей альтернативу заменителю цельного молока, имеет высокие биотехнологический и экологический потенциалы.

Список литературы

- 1. Востроилов, А.В. Молочная продуктивность, химический состав и технологические свойства молока коров красно-пестрой породы / А.В. Востроилов, Е.С. Артемов, Е.Е. Курчаева, Е.В. Баженова // Технологии и товароведение сельскохозяйственной продукции. 2021.-N01. С.71-77.
- 2. Горлов, И.Ф. Повышение эффективности выращивания телят в послемолочный период / И.Ф. Горлов, М.И. Сложенкина, В.Ф. Радчиков [и др.] // Аграрно-пищевые инновации. -2021. №2(14). C.29-42.
- 3. Добриян, Е.И. Защитные свойства компонентов нативного молока / Е.И. Добриян, А.М. Ильина // Вестник Воронежского государственного университета инженерных технологий. -2020. №2. C.83-87.
- 4. Козлов, Е.Е. Потенциальный критерий возможности сокращения в рационе телят товарного молока и его заменителя. Оценка влияния на молодняк альтернативной сухой растворимой кормовой растительной смеси / Е.Е. Козлов // Вестник Донского государственного аграрного университета. − 2025. − №1(55). − С.110-119.
- 5. Козлов, Е.Е. Ресурсные параметры сухой растворимой кормовой растительной смеси при альтернативном замещении молочной выпойки молодняка крупного рогатого скота / Е.Е. Козлов, А.В. Левандовская // Вестник Донского государственного аграрного университета. − 2025. №1(55). С.101-110.
- 6. Козлова, С.В. Формирование иммунитета у телят голштинской породы / С.В. Козлова // Известия Оренбургского государственного аграрного университета. 2021. №5. С.227-231.
- 7. Конкина, В.С. Ценовая конъюнктура на российском рынке молока / В.С. Конкина, А.В. Шемякин // Вестник Воронежского государственного аграрного университета. 2022. №1. С.202-212.
- 8. Петренко, А.А. Иммунологические особенности организма телят / А.А. Петренко // Вестник Алтайского государственного аграрного университета. − 2024. − №4(234). − С.55-62.
- 9. Темирдашева, К.А. Факторы повышения продовольственной безопасности в молочном животноводстве / К.А. Темирдашева, В.М. Гукежев // Известия Оренбургского государственного аграрного университета. − 2023. №1(99). − С.317-323.
- 10. Уткина, О.С. Качество и технологические свойства молока коров разного происхождения / О.С. Уткина, Е.В. Ачкасова // Вестник Ижевской государственной сельскохозяйственной академии. -2023. -№1(73). -C.29-35.
- 11. Хромова, Л.Г. Комплексная оценка молока коров голштинской породы различного экогенеза, производимого в условиях интенсивной технологии / Л.Г. Хромова, С.Е.

- Мирошина, С.Е. Мирошин, Н.И. Морозова // Вестник Рязанского государственного агротехнологического университета имени П.А. Костычева. 2022. №1. С.76-83.
- 12. Azevedo, R.A. Invited review: Total solids concentration in milk or milk replacer for dairy calves / R.A. Azevedo, C.F.A. Lage, B.F. Silper, H.C. Diniz Neto [et al.] // Journal of Dairy Science. 2023. 106(11). P 7341-7351.
- 13. Hesler, B. Using participatory rural appraisal to investigate food production, nutrition and safety in the Tanzanian dairy value chain / B. Hesler, G. Msalya, K. Roesel, K. Fornace [et al.] // Global Food Security. -2019. N 20. P.122-131.
- 14. Welk, A. Invited review: The effect of milk feeding practices on dairy calf behavior, health, and performance—A systematic review / A. Welk, N.D. Otten, M.B. Jensen // Journal of Dairy Science. -2023. N0106(9). P.5853-5879.

References

- 1. Vostroylov, A.V. Milk productivity, chemical composition and technological properties of milk of cows of the Red-Motley breed / A.V. Vostroylov, E.S. Artemov, E.E. Kurchaeva, E.V. Bazhenova // Technologies and commodity science of agricultural products. -2021. N01. P.71-77.
- 2. Gorlov, I.F. Improving the efficiency of calf rearing in the post-milk period / I.F. Gorlov, M.I. Slozhenkina, V.F. Radchikov [et al.] // Agrarian and food innovations. 2021. №2(14). P. 29-42.
- 3. Dobriyan, E.I. Protective properties of native milk components / E.I. Dobriyan, A.M. Ilyina // Bulletin of the Voronezh State University of Engineering Technologies. 2020. №2. P.83-87.
- 4. Kozlov, E.E. Potential criterion for the possibility of reducing commercial milk and its substitute in the diet of calves. Evaluation of the impact of an alternative dry soluble feed plant mixture on young animals / E.E. Kozlov // Bulletin of the Don State Agrarian University. − 2025. − №1(55). − P. 110-119.
- 5. Kozlov, E.E. Resource parameters of dry soluble feed plant mixture for alternative replacement of milk feeding of young cattle / E.E. Kozlov, A.V. Levandovskaya // Bulletin of the Don State Agrarian University. -2025. -Ne1(55). -P.101-110.
- 6. Kozlova, S.V. Formation of immunity in Holstein calves / S.V. Kozlova // Bulletin of the Orenburg State Agrarian University. $-2021. N_{\odot}5. P.227-231.$
- 7. Konkina, V.S. Price conditions on the Russian milk market / V.S. Konkina, A.V. Shemyakin // Bulletin of the Voronezh State Agrarian University. − 2022. − №1. − P.202-212.
- 8. Petrenko, A.A. Immunological features of the calf organism / A.A. Petrenko // Bulletin of the Altai State Agrarian University. -2024. N = 4(234). P.55-62.
- 9. Temirdasheva, K.A. Factors for increasing food security in dairy farming / K.A. Temirdasheva, V.M. Gukezhev // Bulletin of the Orenburg State Agrarian University. − 2023. − №1 (99). − P.317-323.
- 10. Utkina, O.S. Quality and technological properties of milk from cows of different breeds / O.S. Utkina, E.V. Achkasova // Bulletin of the Izhevsk State Agricultural Academy. 2023. №1(73). P.29-35.
- 11. Khromova, L.G. Comprehensive assessment of milk of Holstein cows of different ecogenesis, produced under intensive technology / L.G. Khromova, S.E. Miroshina, S.E. Miroshina, N.I. Morozova // Bulletin of the Ryazan State Agrotechnological University named after P.A. Kostychev. -2022.-N01.-P.76-83.
- 12. Azevedo, R.A. Invited review: Total solids concentration in milk or milk replacer for dairy calves / R.A. Azevedo, C.F.A. Lage, B.F. Silper, H.C. Diniz Neto [et al.] // Journal of Dairy Science. 2023. 106(11). P 7341-7351.
- 13. Hesler, B. Using participatory rural appraisal to investigate food production, nutrition and safety in the Tanzanian dairy value chain / B. Hesler, G. Msalya, K. Roesel, K. Fornace [et al.] // Global Food Security. -2019. -N20. -P.122-131.
- 14. Welk, A. Invited review: The effect of milk feeding practices on dairy calf behavior, health, and performance—A systematic review / A. Welk, N.D. Otten, M.B. Jensen // Journal of Dairy Science. -2023. N0106(9). P.5853-5879.

Сведения об авторах

Козлов Евгений Евгеньевич – ассистент кафедры акушерства, хирургии и физиологии домашних животных ФГБОУ ВО Донской ГАУ, mister.evgenie@mail.ru;

Миронова Ольга Анатольевна — кандидат биологических наук; заведующий базовой кафедрой фитосанитарной биологии и безопасности экосистем института экологии ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы»; ФГБУ «Всероссийский центр карантина растений», <u>m2889888@mail.ru.</u>

Information about the authors

Kozlov Evgeny Evgenievich – assistant of the Department of Obstetrics, Surgery and Physiology of Domestic Animals, Federal State Budgetary Educational Institution of Higher Education Don State Agrarian University, mister.evgenie@mail.ru;

Mironova Olga Anatolyevna – candidate of biological sciences; head of the basic department of phytosanitary biology and ecosystem safety of the Institute of Ecology Federal State Autonomous Educational Institution of Higher Education «Peoples' Friendship University of Russia named after Patrice Lumumba»; Federal State Budgetary Institution «All-Russian Plant Quarantine Center», m2889888@mail.ru.

УДК 636.084.1:636.085.64

МНОГОФАКТОРНЫЙ ПРИЕМ ПРЕДУПРЕЖДЕНИЯ РОСТА УРОВНЯ АЛИМЕНТАРНЫХ РАССТРОЙСТВ КОРМОВОЙ ЭТИОЛОГИИ СРЕДИ МОЛОДНЯКА КРУПНОГО РОГАТОГО СКОТА МОЛОЧНОГО ПЕРИОДА

Козлов Е.Е., Миронова О.А.

Аннотация. У каждой таксономической группы животных превалируют характерные именно их виду заболевания. Несмотря на многолетние селекционные трансформации и адаптивные возможности уровне генной инженерии, исключение сельскохозяйственные высокопродуктивные особи. В значительной степени нозологическая структура в незаразной её части обусловлена морфофункциональным характером формирования организма. У жвачных физиологическая специфика функционирования пишеварительной системы определена целым рядом производственно-полезных признаков и особенностей. Отсутствие незаменимых аминокислот и способность синтезировать животный белок при травоядном типе питания связаны с колоссальными привесами, скоростью роста и продуктивностью. Но отрицательным фактором, в том числе в целом для скотоводческой отрасли, служит онтогенез формирования многокамерного желудка, который при рождении у молодняка имеет структурно-функциональные параметры, характерные для моногастричных животных. Техника использования крупного рогатого включая воспроизводство весьма многогранна и требует всестороннего квалифицированного подхода. Однако, и при направленной профессиональной позиции вышеупомянутые аспекты не позволяют избежать поражения поголовья телят одним из самых повсеместных алиментарных расстройств – диспепсии. В поставленном на молодняке опыте удалось установить критерии значимости термической обработки сборного молока перед выпойкой и превентивное использование электролитной добавки в критические периоды, характеризующиеся пиковыми показателями регистрации случаев расстройств кормовой этиологии. Полученные результаты отражают высокую валидность примененного многофакторного метода профилактики. У опытного поголовья отмечен рост устойчивости к возникновению и развитию простой формы диспепсии до 76%, отсутствовали тяжелая форма течения и рецидивы. В части предупреждения патогенеза за счет пастеризации удалось сократить уровень бактериальной обсемененности выпаиваемого молока на 53,7%, эскалация тяжести течения в зарегистрированных случаях была предупреждена электролитной кормовой смесью, при этом сокращение девиации в сыворотке крови солей Na^+ составило до 5,7%, K^+ до 4,4%.

Ключевые слова. Превентивное кормление, диспепсия, телята, профилактика алиментарных расстройств, водно-солевой баланс, пастеризация, бактериальная обсемененность, условно-патогенная микрофлора.

MULTIFACTORIAL TECHNIQUE FOR PREVENTING THE INCREASE IN THE LEVEL OF NUTRITIONAL DISORDERS OF FEEDING ETIOLOGY AMONG YOUNG DAIRY CATTLE

Kozlov E.E., Mironova O.A.

Abstract: Each taxonomic group of animals has predominantly species-specific diseases. Despite long-term selective transformations and adaptive capabilities at the level of genetic engineering, highly productive agricultural individuals are no exception. To a large extent, the nosological structure in its non-infectious part is due to the morphofunctional nature of the formation of the organism. In ruminants, the physiological specificity of the functioning of the digestive system is determined by a number of production-useful features and characteristics. The absence of essential amino acids and the ability to synthesize animal protein with a herbivorous type of nutrition are associated with colossal weight gain, growth rate and productivity. But a negative factor, including for the cattle breeding industry as a whole, is the ontogenesis of the formation of a multi-chamber stomach, which at birth in young animals has structural and functional parameters characteristic of monogastric animals. The technique of using cattle, including reproduction, is very multifaceted and requires a comprehensive qualified approach. However, even with a targeted professional position, the above-mentioned aspects do not allow avoiding the defeat of the calf population by one of the most widespread alimentary disorders - dyspepsia. In the experiment conducted on young animals, it was possible to establish the criteria for the significance of heat treatment of collected milk before feeding and the preventive use of an electrolyte supplement in critical periods characterized by peak rates of registration of cases of disorders of feed etiology. The results obtained reflect the high validity of the applied multifactorial method of prevention. The experimental livestock showed an increase in resistance to the occurrence and development of a simple form of dyspepsia up to 76%, there were no severe forms of the course and relapses. In terms of preventing pathogenesis, pasteurization made it possible to reduce the level of bacterial contamination of the milk fed by 53.7%, escalation of the severity of the course in registered cases was prevented by an electrolyte feed mixture, while the reduction in the deviation in the blood serum of Na^+ salts was up to 5.7%, K^+ up to 4.4%.

Keywords. Preventive feeding, dyspepsia, calves, prevention of alimentary disorders, water-salt balance, pasteurization, bacterial contamination, opportunistic microflora.

Введение. Обоснованным фактом является влияние качества кормления молодняка крупного рогатого скота на его будущие продуктивные качества. Технологические стратегии животноводства, в том числе скотоводческой отрасли, с прошлого столетия направлены на сокращение внутренних ресурсных потребностей в сырье, имеющем товарную ценность за счет использования заменителей, некондиционного молока, малоценных растительных культур [13].

Нозологический статус поголовья новорожденных телят, их численность, рост и развитие во многом пропорциональны состоянию здоровья маточного стада и формированию иммунокомпетентных органов. Резистентный статус молодняка неонатального периода меняется под воздействием стресс-факторов, в числе которых кормовой занимает одно из первостепенных значений. Помимо смены внутриутробной среды обитания жизнь телят

первых месяцев характеризуется регулярным изменением типа питания, особенно при промышленном способе содержания [5]. В части этиологии диспепсия характеризуется тяжелым расстройством. Среди локальных факторов отмечается влияние гинекологических заболеваний маточного поголовья, связанных с нарушением баланса микрофлоры влагалища. В процессе родов и сразу после них условно-патогенные бактерии, попадая в организм новорожденного, становятся источником дисбаланса относительно составной части микробиоты теленка [6].

Потребление молока из сосковых поилок, находящихся на уровне сопоставимом с высотой расположения вымени коровы, приоритетно при выпойке телят, позволяет секрету железы попадать в сычуг [3]. Сравнительный анализ их использования с ведрами показал необходимость учета физиологических особенностей молодняка при организации содержания. Отличительной чертой поения из ведер являются сокращение общего времени потребления и увеличение объема однократного глотательного движения от 5 до 10 раз. К специфическим особенностям работы пищеварительного тракта у молодняка первых дней жизни относится объем массы глотка в 30 мл, увеличение которого провоцирует попадание в рубец. Эта особенность приема молока при отделении теленка от коровы в новорожденном возрасте на фоне того, что выпойка молодняка занимает порядка 40% временных затрат персонала от числа всех манипуляций при уходе за молодняком [9], предопределяет возникновение диспепсии. Помимо этого, сосательный рефлекс способствует выделению слюны, с помощью которой начинается процесс переваривания и сигнал для старта ферментной моторики желудочно-кишечного тракта в общем [11]. Следствием установки ведер ниже 50 сантиметров является попадание больших порций в преджелудки, лишенные ферментов. Непереваренное молоко образует гнилостную среду, благоприятную для развития патогенной микрофлоры. Рост числа случаев диспепсийного синдрома возрастает до 90% [10].

Проведенные исследования на молодняке крупного рогатого скота и маточном поголовье, свидетельствуют о том, что рост числа отелов определяет увеличение обменных процессов в организме коровы и её продуктивные высокомолочные качества, но повышает риск нарушения метаболических реакций, оказывая негативное влияние на компонентный состав секрета молочной железы, обуславливающий его иммуностимулирующие свойства.

Молозиво, в котором содержатся аутоантитела, вызывает заболевание простой формой диспепсии у телят, переходящей в токсическую с тяжелым течением и гибелью, доходящей до 20% от числа пораженных. Данный фактор определяется нарушением кормления стельных коров, сбоем метаболических обменных реакций и развитием иммунного ответа. При плацентарном питании и своевременно принятых мерах течение такого процесса не опасно для плода, но потребление новорожденными секрета молочной железы провоцирует развитие у телят диспепсии аутоиммунной этиологии, лишая специфической передачи иммунных антител с первыми порциями молозива [1,8].

Высокая скорость инфицирования поголовья и количество возникновения инфекционных и неинфекционных случаев диспепсии связано с этиологией происхождения данного расстройства, возбудителями которого чаще всего являются условно-патогенные бактерии, которые постоянно находятся в желудочно-кишечном тракте, на задних конечностях, копытцах, вымени [2,4,7]. Заболевания и протекающие процессы, связанные с желудочно-кишечным трактом, отражаются на микрофлоре кишечника [12]. Полноценное формирование иммунитета невозможно без здорового баланса микрофлоры рубца. В частности, состояние слизистой оболочки кишечного отдела пищеварительной системы в большинстве определяет резистентные качества барьерного слоя, степень активации лимфоцитов и образования антител класса А. Уровень и состав микробиоты отражают морфофункциональное развитие внутренних органов жвачных, образование сосудистых тканей кишечного отдела [14].

Актуальность. Ошибочное и повсеместное мнение среди ветеринарных специалистов и зоотехников, задействованных в скотоводческой сфере, о низких рисках диспепсийной патологии позволяет характеризовать её как наиболее распространенную среди молодняка

крупного рогатого скота. Действительно кормовая природа алиментарных расстройств не представляет летальной угрозы ни пораженной особи, ни контактному поголовью. Но достоверная постановка своевременная диагноза невозможна ПО причине дифференцируемых на основании первичных симптомов ранних стадий заболеваний незаразной и контагиозной этиологии. Последствиям возникновения последних присущи массовость охвата и неблагоприятный исход на фоне острого течения. Онтогенез жвачных определяет предрасположенность к нарушению функции желудочно-кишечного тракта, а специфика пищеварения непосредственное наличие условно-патогенных микроорганизмов, что ставит алиментарные кормовые расстройства несмотря на низкую вирулентность в разряд факторов вторичных инфекционных и иммунодефицитных заболеваний. Ярко выраженная многократная дефекация при диспепсии как простой, так и тяжелой формы детерминирует обезвоживание, что в свою очередь снижает эффективность этиотропной терапии. Исходя из этого, разработка и внедрение комплексных профилактических мер является актуальной задачей.

Научная новизна. Изучено влияние предупреждающих узконаправленных технологических и кормовых приемов на количество алиментарных расстройств с диспепсийным синдромом в нозологической структуре поголовья молодняка крупного рогатого скота молочного периода. Обоснована целесообразность пастеризации молока телятам с одновременным превентивным применением стабилизирующей водно-электролитный баланс в организме добавки.

Цель и задачи исследования. Цель исследования — оценить эффективность комплексного кормового приема, направленного на предупреждение возникновения и развития алиментарных расстройств, сопряженных с диспепсийным синдромом у молочных телят, за счет сокращения влияния этиологических факторов.

В рамках реализации поставленной цели обозначены задачи:

- установить уровень кормовых расстройств у молодняка, получавшего термически обработанное молока соотнесенно к выпойке сырым при контроле санитарно-бактериологической обсемененности;
- определить степень обезвоживания животных в процессе патогенеза алиментарных заболеваний на фоне применения электролита и при его отсутствии;
- провести сравнительную характеристику исследуемого кормового метода относительно рациона с инертным подходом к профилактике диспепсии.

Условия, материалы и методы исследования. Опыт реализован в условиях молочнотоварного скотоводческого хозяйства, с устойчивым высоким порогом алиментарных расстройств кормовой этиологии в нозологической структуре молодняка молочного периода. Исходя из выявленной проблематики объектом исследования определены телята женского пола голштино-фризской красно-пестрой породы. Временные рамки соответствовали структуре рациона. В недельном возрасте отобраны клинически здоровые телочки с дальнейшей групповой ротацией, направленной относительно снижения влияния вариации живой массы на достоверность результатов. Животные скомплектованы контрольным (І группа) и опытным (ІІ группа) составами по тридцать голов. Молочный период длится до трехмесячного возраста с уменьшением количества, а затем кратности натурального секрета. Наряду с этим обратно пропорциональной схемой вводится стартерный гранулированный корм в начале третьей недели жизни, позволяющий в том числе замещать питательность молока. С 91-го ДНЯ молодняк переводится исключительно гранулированные грубые концентраты. На фоне идентичных условий содержания и кормления отличительными факторам установлены пастеризация выпаиваемого молока в течении всего периода и применение электролита в критические периоды, определенные изменениями в рационе. Термическая обработка осуществлялась в кратковременном режиме при температуре 75±1 °C и двадцатисекундной выдержки. В качестве стабилизатора водносолевого баланса в организме была выбрана кормовая добавка «Осмолайт» с компонентным составом соединений солей, из которых от 16 до 18% цитрата натрия, бетаин гидрохлорида 9-11%, хлорида калия 5-7%, бикарбоната натрия 1-2%, ацетата натрия 3-5%, хлорида натрия 1,5-3%, декстрозы 1,2-2,2%, сульфата цинка 0,2-0,4%. В качестве наполнителя используется легкоусвояемый наполнитель лактоза от 45 до 60% содержания сухой смеси, что особенно актуально при обезвоживании и потери аппетита. Для последующей оценки примененного комплексного приема, направленного на улучшение качества молока и предупреждение развития последствий нарушения функционирования пищеварительной системы телят кормовой этиологии регулярно производился отбор контрольных проб из резервуаров для сырья, предназначенного для выпойки и рандомно непосредственно из ведер. Параллельно с этим осуществлялся забор крови у особей с клиническими признаками диспепсии. Полученный материал был исследован в условиях аккредитованной лаборатории и систематизирован по средним групповым значениям.

Результаты исследования. Методический санитарно-микробиологический контроль молока осуществляемый ежемесячно позволил обобщить вариабельные показатели за период выпойки и установить бактериальную картину кормового сырья (таблица 1).

Таблица 1 – Санитарно-бактериологическая оценка выпаиваемого молока, (M±m)

	Наименование контрольных проб молока			
Исследуемые	Сырое		Пастеризованное	
показатели	молочный резервуар	ведро	молочный резервуар	Ведро
КМАФАнМ, КОЕ/см ³	$(5,6\pm1,2)\times10^5$	$(6,7\pm1,2)\times10^5$	$(2,1\pm1,4)\times10^{5}***$	$(3,1\pm1,4)\times10^{5}*$
БГКП, КОЕ/см ³	$(3,1\pm0,8)\times10^5$	$(3,5\pm0,7)\times10^5$	не обнаружено***	(1,2±0,6)×10 ⁴ *
Соматические клетки, тыс/см ³	$(2,7\pm1,1)\times10^5$	$(2,7\pm1,4)\times10^5$	$(2,3\pm0,6)\times10^5$	$(2,3\pm1,2)\times10^5$

^{*}P>0.95; **P>0.99; ***P>0.999

Молоко, являясь отличной питательной средой для микроорганизмов, в том числе условно-патогенных мезофильных и факультативно-анаэробных, при совокупности негативных зоотехнических факторов становится источником болезнетворных агентов. Средний уровень в сыром молоке за три месяца из молочного резервуара был выше предельно допустимой концентрации (ПДК) на 0,6 КОЕ/см³ (10,7%), колиформных бактерий на 0,1 КОЕ/см³ (3,2%), с нежелательной тенденцией роста числа жизнеспособных колониеобразующих микроорганизмов непосредственно при выпойке на 1,1 КОЕ/см³ (16,4%) и 0,4 КОЕ/см³ (11,4%). В пастеризованном молоке показатели КМАФАнМ и БГКП имели уровень ниже ПДК на 1,9 КОЕ/см³ (38%) и 1,8 КОЕ/см³ (60%). Данные результаты зафиксированы в пробах из индивидуальных ёмкостей для кормления молодняка. При этом направление динамики имеет негативный характер аналогичный интактному к термическому воздействию натуральному секрету. В молочном резервуаре с пастеризованным сырьем колоний бактерий группы кишечной палочки обнаружены не были, разница по общей бактериальной обсемененности составила 1,0 КОЕ/см³ (32,2%). Значимых отклонений по содержанию соматических клеток не выявлено.

Таким образом, можно утверждать о локальных неудовлетворительных зоотехнических условиях в части санитарно-гигиенического подхода кормления молодняка. Обнаруженные превышения в показателе БГКП свидетельствуют о высоких рисках наложения на простую форму диспепсии незаразной этиологии патогенных агентов колибактериоза и протейной инфекции, детерминирующих высокие значения статистики летальности от алиментарных расстройств на фоне сверхострого течения, подавляющего возможность реактивного иммунного отклика. Продуктивность, динамика роста жвачных соразмерны уровню развития пищеварительной системы. Принимая во внимание тот факт, что функциональное состояние последней во многом определяет видовой состав микробиома, можно судить о факторном

влиянии неудовлетворительного в санитарно-гигиеническом отношении молока на количественную контаминацию патогенных микроорганизмов с высокой степенью вероятности возникновения дисбиоза.

Аспект проблемы был также рассмотрен со стороны структуры рациона (таблица 2).

Таблица 2 – Параллельный обзор изменений в схеме кормления и нозологической структуре

1	Изменения в схеме кормления,		Число случаев диспепсии в		
Розраст	кратность в сутки/количество		группе, голов		
Возраст		Стартерный			
молодняка, дней	Молоко,	гранулированный	Контрольная (I)	Опытная (II)	
днси	кратность/литров	корм,	Контрольная (1)	Опытная (п)	
		кратность/кг			
7-21	2/3	1/0,5	24	5	
22-60	2/4	1/1	4	-	
61-70	2/3	1/2	-	-	
71-80	1/3	2/3	18	-	
81-90	1/3	3/4	3	-	

Соотношение количества зарегистрированных случаев диспепсии за три месяца у контрольного поголовья к опытному составило 9,8:1. Данное значение обусловлено возникновением повторных алиментарных случаев в І-ой группе у 70% поголовья, при общем охвате 28 голов (93,3%). Их числа животных ІІ-ой группы были поражены лишь 5 голов (16,6%). В обоих составах развитие кормовых расстройств определено возрастом до трех недель. Также значительная вспышка в контроле зафиксирована в промежутке с семьдесят первого по восьмидесятый день. Вышеперечисленные возрастные периоды характеризуются изменениями в схеме кормления, в первом случае введением гранулированного грубого корма, во втором сокращением кратности и количества натурального секрета в два раза. Случаи среди опытного поголовья объясняются особенностями видового онтогенеза жвачных, сопряженным с выпойкой молока из ведер, а не физиологически приоритетных сосковых поилок.

Кроме того, в периоды с недельного возраста до двадцать первого дня и с семьдесят первого по девяностый через четыре часа после кормления всем животным опытного поголовья выпаивался электролит «Осмолайт», из расчета 60 грамм, растворенных в 2-х литрах воды на голову, при температуре раствора 35°С. Вместе с тем по завершении дополнительно раздавалась вода. Произведенный детальный контроль уровня обезвоживания за счет исследования крови в условиях лаборатории на автоматическом коллоидном осмометре позволил сравнить средние показатели по группам (таблица 3).

Таблица 3 – Степень обезвоживания у животных контрольного и опытного поголовья

Показатель	Единицы	Контрольная	Опытная группа
Показатель	измерения	группа (I) n = 30	(II) $n = 30$
Кормовые расстройства	голов/%	28/93,3%	5/16,6
Из них повторных	голов/%	21/70,0%	0/0%
Уровень концентрации солей Na ⁺ в	ммоль/кг	129±0,12	137±0,08*
пробах крови	MIMOJIB/ KI	127±0,12	137±0,00
Референсные параметры концентрации	ммоль/кг	141	141
солей Na ⁺ в пробах крови	MIMOJIB/ KI	171	171
Уровень концентрации солей K ⁺ в	ммоль/кг	4,2±0,10	4,4±0,16*
пробах крови	MIMOJIB/ KI	7,2=0,10	7,7±0,10
Референсные параметры концентрации	ммоль/кг	4,5	4,5
солей К в пробах крови	WIWOJID/ KI	7,5	7,3

^{*}P\geq 0,95; **P\geq 0,99; ***P\geq 0.999

В опытной группе отсутствовали случаи повторного возникновения диспепсии, в контроле двукратно перенесли данное расстройство 28 голов. Отклонение у поголовья І-ой группы от референсных значений составило по Na^+ 12 ммоль/кг (8,5%), по K^+ 0,3 ммоль/кг (6,6%), во ІІ-ой дефицит солей Na^+ – 4 ммоль/кг (2,8%), K^+ – 0,1 ммоль/кг (2,2%). Основываясь на полученном результате, можно утверждать о преобладании у контрольного молодняка средней степени обезвоживания, опытного – легкой. Отличительным фактом определено отсутствие необходимости терапии во втором случае, в том числе за счет уже применяемого электролита. Молодняк І-ой группы был своевременно подвергнут лечению. В ходе опыта не зарегистрировано случаев с летальным исходом. Особо значимым аспектом также является разница в количестве охваченных алиментарными расстройствами особями. Главным образом верно поставленные и подтвержденные диагнозы, сопряженные с достоверно определенными этиологическими факторами их возникновения, определили сохранность всех телочек.

На основании проведенного опыта можно утверждать, что молоко с высоким уровнем бактериальной обсемененности в совокупности с изменениями в рационе провоцируют алиментарные расстройства у телят раннего постнатального периода. Санитарногигиенические аспекты кормления молодняка, которыми в большинстве пренебрегает обслуживающий стадо персонал, лежат в основе морфофункционального развития пищеварительной системы, в частности заселения преджелудков физиологически присущей микробиотой. Вторичные расстройства у контрольного молодняка объясняются дисбактериозом и заселением условно-патогенной микрофлорой на фоне ее повышенного содержания в молоке.

Выводы. Применение в кормлении молодняка крупного рогатого скота раннего постнатального периода термической обработки сборного молока с введением электролита в критические возрастные периоды, связанными с изменениями в рационе, имеет высокий показатель эффективности в профилактики патогенеза алиментарных расстройств кормовой этиологии с выраженным диспепсийным синдромом. Обоснованность данного кормового приема установлена в:

- 1. снижении бактериальной обсемененности выпаиваемого молока от 53,7% до 65,7%;
- 2. уменьшении степени обезвоживания в случае развития кормового расстройства до легкой формы, не требующей терапевтического вмешательства, за счет поддержания осмотического давления, при показателях стабилизации константы солей Na^+ до 5,7%, K^+ до 4.4%:
- 3. повышении устойчивости к простой форме диспепсии до 76%, в том числе повторных случаев до 100%.

Список литературы

- 1. Баринов, Н.Д. Влияние L-карнитина на энергетический обмен в клетке и иммунную систему телят в постнатальный период / Н.Д. Баринов // Аграрный научный журнал. -2016. -№12. -C.3-7.
- 2. Васильев, Р.О. Сравнительная эффективность разных схем лечения диспепсии у телят / Р.О. Васильев, Т.А. Трошина // Вопросы нормативно-правового регулирования в ветеринарии. -2015. -№4. -C.109−114.
- 3. Исинтаев, Т.И. Анализ существующих методов и технических средств для выпойки молозива новорожденным телятам / Т.И. Исинтаев, Ю.А. Ушаков, Н.С. Хасенов // Вестник науки КАТУ им. С. Сейфуллина. -2017. -№3. -C.42–47.
- 4. Козлов, Е.Е. Влияние сухой растворимой смеси «Бустер Милк» на организм телят при колибактериозе / Е.Е. Козлов, Э.Е. Острикова, А.А. Миронова, А.С. Дегтярь // Инновационные пути решения актуальных проблем АПК России : Материалы всероссийской (национальной) научно-практической конференции. В 2-х т., Персиановский, 20 декабря 2023 г. Персиановский: Донской государственный аграрный университет, 2023. С. 146–150.
- 5. Козлова, С.В. Формирование иммунитета у телят голштинской породы / С.В. Козлова //

- Известия Оренбургского государственного аграрного университета. 2021. №5. С.227–231.
- 6. Самоделкин, А.Г. Биотехнологические методы повышения эффективности ведения скотоводства / А.Г. Самоделкин, С.П. Еремин // Вестник Казанского государственного аграрного университета. -2014.-N24. -C.124-127.
- 7. Сарсекеева, Н.М. Влияние пре- и пробиотических препаратов на состояние кишечной микрофлоры здоровых и больных диспепсией телят / Н.М. Сарсекеева, Л.И. Проскурина // Вестник инновационного евразийского университета. 2018. №2. С.55–58.
- 8. Ульянов, А.Г. Диспепсия аутоиммунного происхождения у новорожденных телят и ее профилактика / А.Г. Ульянов // Ученые записки учреждения образования «Витебская ордена «Знак почета» государственная академия ветеринарной медицины». 2017. №3. С.77–81.
- 9. Фасхутдинова, М.С. Бюджетирование затрат на производство и продажи продукции животноводства / М.С. Фасхутдинова // Вестник Казанского государственного аграрного университета. -2012. -№3. -C.59-63.
- 10. Хорошайло, Т.А. Влияние кормовых стресс-факторов на продуктивные качества тёлок голштинской породы / Т.А. Хорошайло, И.В. Сердюченко [и др.] // Известия Оренбургского государственного аграрного университета. 2024. №5(109). С.294–299.
- 11. Христенко, А.Г. Обоснование применения физиологически адаптированного оборудования для кормления телят молочного периода / А.Г. Христенко, И.Ю. Александров [и др.] // Вестник Алтайского государственного аграрного университета. 2022. №2(208). С.110–117.
- 12. Malmuthuge, N. Gut microbiome and omics: a new definition to ruminant production and health / Nilusha Malmuthuge, Le Luo Guan // Animal frontiers. -2016. -No6(2). -P.8-12.
- 13. Soberon, F. Preweaning milk replacer intake and effects on long-term productivity of dairy calves / F. Soberon, E. Raffrenato, R.W. Everett, M.E. Van Amburgh // Journal of Dairy Science. $-2012. N_{2}95(2). P.783-793.$
- 14. Sommer, F. The gut microbiota masters of host development and physiology / Felix Sommer, Fredrik Backhed // Nature reviews microbiology. -2013. N011(4). P.227-238.

References

- 1. Barinov, N.D. The influence of L-carnitine on energy metabolism in the cell and the immune system of calves in the postnatal period / N.D. Barinov // Agrarian scientific journal. -2016. N012. P.3-7.
- 2. Vasiliev, R.O. Comparative effectiveness of different treatment regimens for dyspepsia in calves / R.O. Vasiliev, T.A. Troshina // Issues of legal regulation in veterinary medicine. $-2015. N_{2}4. P.109-114.$
- 3. Isintaev, T.I. Analysis of existing methods and technical means for feeding colostrum to newborn calves / T.I. Isintaev, Y.A. Ushakov, N.S. Khasenov // Science Bulletin of KATU named after S. Seifullin. -2017. No 3. P.42-47.
- 4. Kozlov, E.E. The effect of the dry soluble mixture «Booster Milk» on the body of calves with colibacillosis / E.E. Kozlov, E.E. Ostrikova, A.A. Mironova, A.S. Degtyar // Innovative ways to solve urgent problems of the agro-industrial complex of Russia: Materials of the All-Russian (national) scientific and practical conference. In 2 volumes, Persianovsky, December 20, 2023. Persianovsky: Don State Agrarian University, 2023. P.146–150.
- 5. Kozlova, S.V. Formation of immunity in Holstein calves / S.V. Kozlova // Bulletin of the Orenburg State Agrarian University. $-2021. N_{\odot}5. P.227-231.$
- 6. Samodelkin, A.G. Biotechnological methods for increasing the efficiency of livestock farming / A.G. Samodelkin, S.P. Eremin // Bulletin of the Kazan State Agrarian University. 2014. №4. P.124–127.
- 7. Sarsekeyeva, N.M. Effect of pre- and probiotic preparations on the state of intestinal microflora of healthy calves and calves with dyspepsia / N.M. Sarsekeyeva, L.I. Proskurina // Bulletin of the Innovative University of Eurasia. -2018. -N2. -P.55-58.
- 8. Ulyanov, A.G. Dyspepsia of autoimmune origin in newborn calves and its prevention / A.G. Ulyanov // Scientific notes of the educational institution «Vitebsk Order «of the Badge of Honor»

State Academy of Veterinary Medicine». – 2017. – №3. – P.77–81.

- 9. Faskhutdinova, M.S. Budgeting of costs for production and sales of livestock products / M.S. Faskhutdinova // Bulletin of the Kazan State Agrarian University. − 2012. − №3. − P.59–63.
- 10. Khoroshailo, T.A. The influence of feed stress factors on the productive qualities of Holstein heifers / T.A. Khoroshailo, I.V. Serdyuchenko [et al.] // Bulletin of the Orenburg State Agrarian University. -2024. -N05(109). -P.294-299.
- 11. Khristenko, A.G. Justification for the use of physiologically adapted equipment for feeding calves of the milk period / A.G. Khristenko, I.Y. Alexandrov [et al.] // Bulletin of the Altai State Agrarian University. -2022. N 2(208). P.110-117.
- 12. Malmuthuge, N. Gut microbiome and omics: a new definition to ruminant production and health / Nilusha Malmuthuge, Le Luo Guan // Animal frontiers. -2016. $\cancel{N} = 6(2)$. P.8-12.
- 13. Soberon, F. Preweaning milk replacer intake and effects on long-term productivity of dairy calves / F. Soberon, E. Raffrenato, R.W. Everett, M.E. Van Amburgh // Journal of Dairy Science. − 2012. − №95(2). − P.783–793.
- 14. Sommer, F. The gut microbiota masters of host development and physiology / Felix Sommer, Fredrik Backhed // Nature reviews microbiology. 2013. №11(4). P.227–238.

Сведения об авторах

Козлов Евгений Евгеньевич – ассистент кафедры акушерства, хирургии и физиологии домашних животных ФГБОУ ВО Донской ГАУ, <u>mister.evgenie@mail.ru;</u>

Миронова Ольга Анатольевна — кандидат биологических наук; заведующий базовой кафедрой фитосанитарной биологии и безопасности экосистем института экологии ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы»; ФГБУ «Всероссийский центр карантина растений», <u>m2889888@mail.ru.</u>

Information about the authors

Kozlov Evgeny Evgenievich – assistant of the Department of Obstetrics, Surgery and Physiology of Domestic Animals, Federal State Budgetary Educational Institution of Higher Education Don State Agrarian University, mister.evgenie@mail.ru;

Mironova Olga Anatolyevna – candidate of biological sciences; head of the basic department of phytosanitary biology and ecosystem safety of the Institute of Ecology Federal State Autonomous Educational Institution of Higher Education «Peoples' Friendship University of Russia named after Patrice Lumumba»; Federal State Budgetary Institution «All-Russian Plant Quarantine Center», m2889888@mail.ru.

УДК 636.087.7:636.033

СРАВНИТЕЛЬНАЯ ОЦЕНКА ВЛИЯНИЯ БЕЛКОВЫХ ДОБАВОК НА ХИМИЧЕСКИЙ СОСТАВ И КАЧЕСТВО МЯСА СВИНЕЙ

Горлов И.Ф., Раджабов Р.Г., Гак Ю.М.

Аннотация: В статье рассматриваются вопросы повышения качества продукции свиноводства за счет оптимизации рационов подсвинков с использованием кормовых добавок. Целью работы являлось изучение влияния рыбной муки (5,5 % от сухого вещества) и кормовых дрожжей (6 % от сухого вещества) на химический состав, аминокислотный профиль и показатели качества мяса свиней крупной белой породы. Проведено сравнение трех групп животных по 10 голов в каждой с использованием контрольного убоя и лабораторных исследований. Контрольная группа получала основной рацион, соответствующий нормам ВИЖ. Животные второй группы дополнительно получали

рыбную муку в количестве 5,5 % от сухого вещества корма, а третьей группы — кормовые дрожжи в количестве 6 % от сухого вещества корма. Результаты показали, что содержание сырого протеина увеличилось на 2,52 % (P < 0,01) при применении кормовых дрожжей, а сумма незаменимых аминокислот возросла на 18,7 г/кг (P < 0,001) при использовании рыбной муки. Биологическая ценность белка (PDCAAS) достигла 67,1 % во второй группе и 66,3 % в третьей группе. Исследования показывают, что использование рыбной муки и кормовых дрожжей позволяет существенно улучшить качество мяса, что имеет важное значение для практического применения в промышленном свиноводстве.

Ключевые слова. Крупная белая порода, рыбная мука, кормовые дрожжи, химический состав мяса, аминокислотный профиль, биологическая ценность белка.

COMPARATIVE ASSESSMENT OF THE EFFECT OF PROTEIN ADDITIVES ON THE CHEMICAL COMPOSITION AND QUALITY OF PIG MEAT

Gorlov I.F., Radzhabov R.G, Gak Yu.M.

Abstract. The article discusses the issues of improving the quality of pig products by optimizing the diets of piglets using feed additives. The aim of the work was to study the effect of fish meal (5.5%) of dry matter) and feed yeast (6%) of dry matter) on the chemical composition, amino acid profile and quality indicators of large white breed pig meat. A comparison of three groups of animals with 10 heads each was carried out using control slaughter and laboratory tests. The control group received a basic diet that met the standards of All-Russian Institute of Livestock Breeding. The animals of the second group additionally received fish meal in the amount of 5.5% of the dry matter of the feed, and the third group received feed yeast in the amount of 6% of the dry matter of the feed. The results showed that the crude protein content increased by 2.52% (P < 0.01) when using feed yeast, and the amount of essential amino acids increased by 18.7 g/kg (P < 0.001) when using fish meal. The biological value of the protein (PDCAAS) reached 67.1% in the second group and 66.3% in the third group. Research shows that the use of fishmeal and feed yeast can significantly improve the quality of meat, which is important for practical use in industrial pork.

Keywords. Large white breed, fish meal, feed yeast, chemical composition of meat, amino acid profile, biological value of protein.

Свиноводство — это одна из ключевых отраслей животноводства, которая обеспечивает население высококачественной белковой пищей. В России по данным на 2024 год, поголовье свиней в хозяйствах всех категорий достигло 27,8 млн голов, а объем производства свинины в живом весе превысил 5,6 млн тонн, что укрепило страну в числе ведущих мировых производителей и экспортеров данной продукции. В настоящее время направления в развитии агропромышленного комплекса идут не только на наращивание объемов, но и на повышение эффективности производства свинины за счет улучшения качества продукции и снижения затрат на кормление. Благодаря этому остается актуальным поиск новых подходов к оптимизации рационов подсвинков, что напрямую влияет на химический состав, биологическую ценность и технологические свойства мяса.

На качество мяса свиней влияет не только генетические особенности животных, но и условиями их содержания, а также составом корма. Если включать в рацион такие биологический активные добавки, как рыбная мука и кормовые дрожжи, то это позволяет существенно улучшить его потребительские характеристики. Рыбная мука, которая является источником полноценного белка, богата незаменимыми аминокислотами, такими как лизин и метионин, они же играют ключевую роль в формировании полноценного белка. Эти аминокислоты не только повышают биологическую ценность мяса, но и способствуют улучшению его технологических свойств, таких как влагоемкость и сочность. Кормовые дрожжи, содержащие значительное количество белка, витаминов группы В и минеральных веществ, активируют обменные процессы в организме молодняка, что также положительно

сказывается на качестве мяса. Выводом является, что использование этих добавок становится важным инструментом для повышения продуктивности животных и улучшения характеристик продукции.

Биологическая ценность белка — это один из важнейших показателей качества мяса, который напрямую связан с его аминокислотным составом и усвояемостью организмом человека. Лимитирующие аминокислоты, такие как лизин, метионин+цистеин и треонин, являются основными факторами, влияющими на полноценность белка (1-9).

Исследования в области свиноводства имеют важное теоретическое и практическое значение, так как позволяют выявить влияние различных добавок на химический состав, аминокислотный профиль и технологические свойства мяса. Улучшение этих характеристик способствует разработке научно обоснованных рекомендаций для сельскохозяйственного производства, направленных на повышение качества продукции.

Цель и задачи исследований.

Цель исследования. Определение влияния кормовых добавок (рыбной муки и кормовых дрожжей) на химический состав, аминокислотный профиль, технологические свойства и биологическую ценность мяса свиней крупной белой породы.

Задачи исследования.

- 1. Изучить изменения химического состава длиннейшей мышцы спины свиней при включении в рацион рыбной муки и кормовых дрожжей, оценив содержание влаги, сухого вещества, минеральных веществ, липидов и сырого протеина.
- 2. Проанализировать показатели качества мяса, такие как кислотность (рН), влагоемкость и белково-качественный показатель (БКП), для оценки технологических свойств продукции.
- 3. Определить влияние кормовых добавок на аминокислотный состав мяса, выявив изменения содержания незаменимых и заменимых аминокислот, а также рассчитав аминокислотный скор (AAS) и биологическую ценность белка (PDCAAS).

Материал и методика исследований.

Объектом исследования являлись свиньи крупной белой породы, находящиеся на откорме. Исследования проводились на базе ПЗК им. Ленина Суровикинского района Волгоградской области.

Животные распределялись по принципу аналогов с учетом возраста, живой массы и пола. Контрольная группа получала основной рацион, соответствующий нормам ВИЖ и состоящий из ячменя, пшеницы, кукурузы, подсолнечного шрота, травяной муки и комбисилоса. Животные второй группы дополнительно получали рыбную муку в количестве 5,5 % от сухого вещества корма, а третьей группы — кормовые дрожжи в количестве 6 % от сухого вещества корма.

Методы исследования.

В конце откормочного периода провели контрольный убой животных на мясокомбинате ЗАО «Агро-Инвест» согласно методикам ВИЖ и ВНИИМП. Пробы длиннейшей мышцы спины отбирали для дальнейшего анализа химического состава, аминокислотного профиля и показателей качества мяса.

Химический состав мяса определяли в соответствии с ГОСТ 32182-2013 «Мясо и мясные продукты. Методы определения влаги», ГОСТ 32183-2013 «Мясо и мясные продукты. Методы определения жира» и ГОСТ 32184-2013 «Мясо и мясные продукты. Методы определения белка». Минеральный состав анализировали согласно ГОСТ 32185-2013 «Мясо и мясные продукты. Методы определения золы».

Аминокислотный состав мяса определяли методом высокоэффективной жидкостной хроматографии (ВЭЖХ) в соответствии с ГОСТ Р 55572-2013 «Продукты пищевые. Метод определения аминокислот». Рассчитывали аминокислотный скор (AAS) и биологическую ценность белка (PDCAAS) по стандартным методикам ФАО/ВОЗ.

Кислотность мяса (pH): измеряли потенциометрическим методом согласно ГОСТ 32190-2013 «Мясо и мясные продукты. Методы определения pH».

Влагоемкость: определяли методом прессования по ГОСТ 32186-2013 «Мясо и мясные

продукты. Методы определения влагоудерживающей способности».

Белково-качественный показатель (БКП): рассчитывали как отношение содержания белка к влагоемкости.

Полученные данные обрабатывались методами вариационной статистики с использованием программы Microsoft Excel и специализированного программного обеспечения Statistica 10. Достоверность различий оценивали по t-критерию Стьюдента при уровне значимости *- P < 0.05, **- P < 0.01, ***- P < 0.001.

Все группы животных содержались в одинаковых условиях: температурный режим, влажность и продолжительность светового дня соответствовали нормативным требованиям. Кормление проводилось согласно установленному графику, а доступ к воде был свободным.

Использование стандартных методов анализа и строгий контроль условий эксперимента позволили получить достоверные данные о влиянии кормовых добавок на качество мяса свиней. Результаты исследований могут быть использованы для разработки рекомендаций по оптимизации рационов в промышленном свиноводстве.

Результаты исследований. Химический состав мышечной ткани является ключевым показателем качества свинины и отражает влияние кормовых факторов на метаболические процессы в организме животных. Содержание влаги, сухого вещества, протеина и липидов в мясе напрямую зависит от сбалансированности рациона и наличия биологически активных добавок (таблица 1).

таолица т - химический состав длиннейшей мышцы спины (в /0)				
П	Группы животных			
Показатели	I	II	III	
Влага	74,41±0,75	73,78±1,05	71,95±0,21**	
Сухое вещество	25,59±0,80	26,22±1,05	28,05±0,21*	
Минеральные вещества	1,10±0,03	1,22±0,04*	1,22±0,06	
Липиды	3,98±1,01	2,81±0,98	3,80±0,94	
Сырой протеин	20,51±0,38	22,19±0,75	23,03±0,65**	

Таблица 1 - Химический состав длиннейшей мышцы спины (в %)

Анализ данных таблицы 1 демонстрирует, что содержание влаги у животных второй группы на 0,63 % меньше, чем у контрольных животных, что указывает на более плотную структуру мяса. Следовательно, влияние рыбной муки на содержание влаги в данном случае незначительно. Уровень сухого вещества при этом на 0,63 % выше, что составляет 2,46 % относительно исходного значения. Такой показатель как минеральные вещества увеличился на 0,12 % (P < 0,05), что свидетельствует о положительном влиянии рыбной муки на минерализацию тканей. При этом содержание липидов снизилось на 1,17 %, что значительно ниже контрольных показателей на 29,37 %. Очевидно, что рыбная мука способствует снижению жировой прослойки, однако это изменение не является статистически значимым (P > 0,05). Сырой протеин увеличился на 1,68 % (P < 0,01), что выше контрольной группы на 8,19 %. Это значит, что рыбная мука оказывает существенное влияние на повышение белковой составляющей мяса.

У молодняка третьей группы содержание влаги на 2,46 % (P<0,01) ниже, чем у контрольной группы, что также говорит о более плотной структуре мяса. Уровень сухого вещества при этом возрос на 2,46 %, что превышает контрольные показатели на 9,63 % (P<0,05). Такое изменение можно объяснить высоким содержанием легкоусвояемого белка в кормовых дрожжах. Минеральные вещества остались на уровне второй группы, не изменившись относительно контроля, что указывает на стабильность данного показателя. Липиды снизились на 0,18 %, что составляет 4,52 % относительно исходного значения. Сырой протеин увеличился на 2,52 % (P<0,01), что выше контрольной группы на 12,29 %.

По итогу кормовые дрожжи оказывают наиболее выраженное влияние на повышение белковой составляющей мяса среди всех групп.

Наши данные согласуются с современными представлениями о влиянии полноценного белка на формирование качественного мяса. Рыбная мука, богатая незаменимыми аминокислотами, способствует повышению уровня сырого протеина и минеральных веществ, что улучшает биологическую ценность мяса. Кормовые дрожжи, содержащие легкоусвояемый белок и витамины группы В, также способствуют повышению белковой составляющей мяса, но их эффект выражен сильнее за счет активации обменных процессов у молодняка.

Исследование аминокислотного состава мяса играет ключевую роль в оценке его биологической ценности и питательных свойств. Включение в рацион подсвинков различных белковых добавок, таких как рыбная мука и кормовые дрожжи, позволяет выяснить их влияние на формирование качественного мяса. Изучение суммарного содержания аминокислот, их соотношения и индекса помогает определить оптимальные условия для повышения продуктивности молодняка и улучшения характеристик продукции (таблица 2).

Таблица 2 - Содержание аминокислот в мясе свиней, г/кг

Поморожени	Группы животных			
Показатели	I	II	III	
Валин	10,34±1,15	14,4±1,13*	13,02±1,18	
Изолейцин	9,82±1,14	13,6±1,12*	11,51±1,12	
Лейцин	25,61±1,23	28,25±1,25	24,25±1,23	
Лизин	26,53±1,32	31,84±1,32*	27,57±1,24	
Метионин	5,28±0,02	5,79±0,02***	5,94±0,02***	
Треонин	13,47±0,12	16,85±0,11***	14,99±0,15***	
Триптофан	2,85±0,03	3,39±0,05***	3,25±0,01***	
Фенилаланин	13,9±1,24	14,21±1,21	11,75±1,23	
Гистидин	21,4±0,09	19,57±0,17***	14,56±0,13***	
Аланин	16,48±0,82	17,13±0,89	18,06±0,81	
Аргинин	13,7±0,28	15,33±0,28**	11,66±0,23***	
Аспаргиновая кислота	27,42±1,31	31,05±1,81	22,23±1,32*	
Глутаминовая кислота	61,82±1,41	57,71±1,29*	49,76±1,32***	
Глицин	5,34±0,02	5,83±0,06***	2,03±0,02***	
Пролин	15,27±0,25	11,64±0,31***	9,84±0,28***	
Тирозин	19,16±0,13	17,99±0,15***	15,21±0,11***	
Серин	13,71±0,19	14,91±0,21**	12,25±0,27**	
Оксипролин	$0,43\pm0,01$	0,31±0,01***	0,3±0,01***	
Сумма аминокислот	302,53±0,60	319,8±0,63***	268,18±0,59***	
в т.ч незаменимых	129,2±0,70	147,9±0,71***	126,84±0,70*	
- заменимых	173,33±0,49	171,9±0,56	141,34±0,49***	
Аминокислотный индекс	0,75	0,86	0,90	

Анализ содержания аминокислот в мясе свиней показывает, что использование рыбной муки привело к значительным изменениям в аминокислотном профиле мышечной ткани. Такой показатель как валин увеличился на 4,06 г/кг (P < 0,05), что выше исходного значения на 39,28 %. Также наблюдается прирост изолейцина на 3,78 г/кг (P < 0,05), что составляет 38,50 % относительно контрольной группы. Лизин возрос на 5,31 г/кг (P < 0,05), что выше на 20,02 %. Однако лейцин практически не изменился, увеличившись лишь на 2,64 г/кг. Метионин и треонин также продемонстрировали существенный рост: на 0,51 г/кг (9,66 %) и 3,38 г/кг (25,08 %) соответственно (P < 0,001). Сумма незаменимых аминокислот увеличилась на 18,7 г/кг (P < 0,001), что выше первоначального уровня на 14,48 %. При этом

аминокислотный индекс повысился до 0,86, что указывает на улучшение качества белка.

При сравнении третьей группы с первой видно, что триптофан увеличился на $0.4~\rm f/kr$ (P <0,001), что выше на $14.04~\rm \%$. Однако фенилаланин снизился на $2.15~\rm f/kr$ (P < 0.05), что составляет $15.47~\rm \%$ относительно исходного значения. Гистидин уменьшился на $6.84~\rm f/kr$ (P < 0.001), что ниже на $31.96~\rm \%$. Аргинин снизился на $2.04~\rm f/kr$ (P < 0.001), что составляет $14.90~\rm \%$. Глицин и пролин также продемонстрировали значительное снижение: на $3.31~\rm f/kr$ (P < 0.001) и $5.43~\rm f/kr$ (P < 0.001), что соответствует $61.99~\rm \%$ и $35.56~\rm \%$ соответственно. Сумма всех аминокислот уменьшилась на $34.35~\rm f/kr$ (P < 0.001), что ниже на $11.36~\rm \%$. Заменимые аминокислоты снизились на $31.99~\rm f/kr$ (P < 0.001), что составляет $18.46~\rm \%$. Несмотря на это, аминокислотный индекс повысился до 0.90, что указывает на лучшее соотношение незаменимых и заменимых аминокислот в этой группе.

Изучение аминокислотного состава мяса подсвинков подтвердило положительное влияние рыбной муки на повышение содержания незаменимых аминокислот, что делает продукцию более питательной. Кормовые дрожжи, хотя и снижали общее количество аминокислот, способствовали улучшению их соотношения, что также важно для биологической ценности. Следовательно, использование данных добавок позволяет целенаправленно влиять на качество мяса, делая его более подходящим для питания человека.

Оценка показателей качества мяса является важнейшим этапом в исследовании влияния кормовых добавок на организм подсвинков (таблица 3).

- " "				
Поморожани		Группы животных		
Показатели	I	II	III	
Кислотность мяса, рН	5,91±0,01	$5,88\pm0,03$	5,97±0,02*	
Влагоемкость, %	54,6±0,18	56,9±0,65	58,0±0,57***	
Белково-качественный показатель (БКП)	6,6±0,46	10,9±0,15***	10,8±0,31***	

Таблица 3 - Показатели качества мяса свиней

Анализ данных таблицы 3 демонстрирует, что кислотность мяса у животных второй группы снизилась на 0.03 единицы (P > 0.05) по сравнению с контрольной группой, что указывает на незначительное изменение этого показателя. Однако у третьей группы кислотность возросла на 0.06 единицы (P < 0.05), что может быть связано с особенностями метаболизма молодняка при использовании кормовых дрожжей. Влагоемкость мяса во второй группе увеличилась на 2.3% (P < 0.001), что выше исходного значения на 4.21%. У третей группы этот показатель возрос еще сильнее, на 3.4% (P < 0.001), что составляет 6.23% относительно контроля. Такие изменения свидетельствуют о более высокой способности мяса удерживать влагу, что улучшает его сочность и текстуру.

Белково-качественный показатель (БКП) у подопытных особей второй группы увеличился на 4,3 единицы (P < 0.001), что выше исходного значения на 65,15 %. У молодняка третьей группы этот показатель также существенно вырос, на 4,2 единицы (P < 0.001), что составляет 63,64 %. Следовательно, использование рыбной муки и кормовых дрожжей оказывает схожее влияние на качество белкового компонента мяса, значительно повышая его биологическую ценность.

Изучение показателей качества мяса подтвердило положительное влияние рыбной муки и кормовых дрожжей на формирование продукта с улучшенными характеристиками. Повышение влагоемкости и белково-качественного показателя указывает на то, что такие добавки способствуют улучшению технологических свойств мяса и его питательной ценности.

Оценка аминокислотного скора и биологической ценности белка является ключевым этапом в исследовании качества мяса. Лимитирующие аминокислоты и общий аминокислотный скор (PAC) определяют биологическую ценность белка, что напрямую связано с питательными свойствами продукции (таблица 4).

Таблица 4 - Аминокислотный скор и биологическая ценность белка, %

Показатели	Группы животных			
	I	II	III	
Валин	100,8	129,8	113,1	
Изолейцин	119,7	153,2	124,9	
Лейцин	178,4	181,9	150,4	
Лизин	235,2	260,9	217,7	
Метионин + цистеин	73,6	74,6	73,7	
Треонин	164,2	189,8	162,7	
Триптофан	139,0	152,8	141,1	
Фенилаланин +тирозин	268,6	241,9	195,1	
PAC	73,43	74,57	73,71	
Биологическая ценность (PDCAAS)	66,1	67,1	66,3	

Анализ данных таблицы 4 демонстрирует, что аминокислотный скор у молодняка второй группы существенно отличается от контрольной группы. Так, валин увеличился на 29 %, что указывает на значительное улучшение этого показателя. Изолейцин возрос на 33,5 %, а лизин — на 25,7 %, что свидетельствует о повышении содержания незаменимых аминокислот в мясе. Однако лейцин практически не изменился, увеличившись лишь на 3,5 %. Триптофан повысился на 13,8 %, что также говорит о положительном влиянии рыбной муки на аминокислотный состав. При этом метионин + цистеин вырос всего на 1 %, что указывает на стабильность этого показателя. РАС увеличился на 1,14 %, а биологическая ценность (PDCAAS) возросла на 1 %.

У подопытных свиней третьей группы валин снизился на 12,7 % по сравнению со второй группой, однако он остался выше контрольного значения на 12,3 %. Изолейцин снизился на 28,3 %, что указывает на менее выраженное влияние кормовых дрожжей на этот показатель. Лизин уменьшился на 43,2 %, что ниже второго варианта, но все же выше контрольного значения на 17,5 %. Триптофан снизился на 11,7 %, а фенилаланин + тирозин упал на 46,8 %, что значительно ниже показателей второй группы. Тем не менее, РАС остался практически на уровне второй группы, снизившись лишь на 0,86 %. Биологическая ценность (PDCAAS) также практически не изменилась, снизившись на 0,8 %.

Изучение аминокислотного скора и биологической ценности белка подтвердило, что использование рыбной муки способствует наиболее выраженному повышению содержания незаменимых аминокислот, таких как изолейцин, лизин и триптофан. Кормовые дрожжи, хотя и уступают рыбной муке по ряду показателей, также обеспечивают значительное улучшение качества белка. Незначительные различия в РАС и PDCAAS между второй и третьей группами указывают на то, что обе добавки обеспечивают высокую биологическую ценность мяса. В итоге выбор добавки зависит от конкретных целей: максимизация отдельных аминокислот или общее улучшение аминокислотного профиля.

Заключение. Таким образом, анализ данных демонстрирует, что использование рыбной муки и кормовых дрожжей оказывает существенное влияние на качество мяса свиней. Полученные данные могут быть использованы в сельскохозяйственной практике для разработки рационов, направленных на улучшение питательных и технологических свойств мяса. Это особенно важно для современного производства, где требуется выпуск продукции с высокой биологической и потребительской ценностью.

Список литературы

1. Антипов, А.Е. Влияние на качество свинины частичной замены комбикорма на откорме нетрадиционным кормом / А.Е. Антипов, Е.В. Юрьева // Вестник Мичуринского государственного аграрного университета. – 2022. – № 3(70). – С. 90-94.

- 2. Горлов И.Ф. Влияние новой пребиотической кормовой добавки на естественную резистентность и продуктивность свиней крупной белой породы / И.Ф. Горлов, М.И. Сложенкина, А.А. Мосолов [и др.] // Вестник Башкирского государственного аграрного университета. − 2023. − № 3(67). − С. 36-41.
- 3. Горлов, И.Ф. Биохимические показатели крови свиней при оценке качественных характеристик мяса / И.Ф. Горлов, М.И. Сложенкина, В.А. Бараников, Д.В. Николаев, В.И. Водянников, В.В. Лодянов // Свиноводство. 2019. № 1. С. 31-35.
- 4. Горлов, И.Ф. Влияние новых кормовых препаратов на мясную продуктивность свиней скороспелого мясного типа (СМ1) / И.Ф. Горлов, А.А. Мосолов, В.А. Бараников // Аграрнопищевые инновации. − 2018. − № 1 (1). − С. 54-58.
- 5. Горлов, И.Ф. Качественные показатели мясной продуктивности свиней, получавших новые антистрессовые препараты / И.Ф. Горлов, А.А. Мосолов, В.А. Бараников // Вестник Алтайского государственного аграрного университета. 2018. № 3 (161). С. 122-129.
- 6. Горлов, И.Ф. Химический состав и структура мышечной ткани молодняка свиней / И.Ф. Горлов, В.А. Бараников, В.В. Федорова, А.Н. Бараникова // Инновации в производстве продуктов питания: от селекции животных до технологии пищевых производств: мат. междунар. науч.-практ. конф. 8 февраля 2018 г. п Персиановский: Донской ГАУ, 2018. С. 296-299.
- 7. Милушев, Р.К. Влияние комбикорма с витаминно-бетаиновым концентратом на биохимические показатели мяса свиней / Р.К. Милушев, Г.М. Шулаев // Главный зоотехник. -2021. № 2(211). C. 30-41. DOI 10.33920/sel-03-2102-04.
- 8. Суханова, С.Ф. Связь показателей мяса молодняка свиней с использованием в рационах витаминной добавки / С.Ф. Суханова, А.Л. Засыпкин // Кормление сельскохозяйственных животных и кормопроизводство. $2018. N ext{0}. C.$ 60-64.
- 9. Славинскайте, И.Э. Эффективность кормовых добавок в свиноводстве / И.Э. Славинскайте, Э.Г. Гумбатов, С.В. Мошкина // Научные исследования сельскохозяйственному производству : Материалы II Международной научно-практической Интернет-конференции, Орел, 23 марта 2023 года. Орел: Издательство Картуш, 2023. С. 467-471.

References

- 1. Antipov, A. E. The effect of partial replacement of compound feed on fattening with non-traditional feed on pork quality / A. E. Antipov, E. V. Yuryeva // Bulletin of Michurinsk State Agrarian University. $-2022. N_0 3(70). pp. 90-94.$
- 2. Gorlov I. F. The influence of a new prebiotic feed additive on the natural resistance and productivity of large white breed pigs / I. F. Gorlov, M. I. Slogenkina, A. A. Mosolov [et al.] // Bulletin of the Bashkir State Agrarian University. -2023. N = 3(67). Pp. 36-41.
- 3. Gorlov, I.F. Biochemical parameters of pig blood in assessing the qualitative characteristics of meat / I.F. Gorlov, M.I. Skladenkina, V.A. Baranikov, D.V. Nikolaev, V.I. Vodyannikov, V.V. Lodyanov // Pig breeding. -2019. No 1. pp. 31-35.
- 4. Gorlov, I.F. Gorlov, A.A. Mosolov, V.A. Baranikov, The influence of new feed preparations on the pig meat yield of the early-maturing meat type (CM1), // Agricultural and food innovations. 2018. N 1 (1). pp. 54-58.
- 5. Gorlov, I.F. Qualitative indicators of pig meat yield treated with new anti-stress drugs / I.F. Gorlov, A.A. Mosolov, V.A. Baranikov // Bulletin of the Altai State Agrarian University. − 2018. − № 3 (161). − pp. 122-129.
- 6. Gorlov, I.F. Chemical composition and structure of muscle tissue of young pigs / I.F. Gorlov, V.A. Baranikov, V.V. Fedorova, A.N. Baranikova // Innovations in food production: from animal breeding to food production technology: Proceedings of the International Scientific and Practical Conference on February 8, 2018, Persianovsky: DonGAU, 2018, pp. 296-299.
- 7. Milushev, R. K. The effect of compound feed with vitamin-betaine concentrate on the biochemical parameters of pig meat / R. K. Milushev, G. M. Shulaev // Chief zootechnician. $-2021. N_{\odot} 2(211). Pp. 30-41. DOI 10.33920/sel-03-2102-04.$
- 8. Sukhanova, S. F. The relationship of indicators of young pig meat with the use of vitamin

supplements in diets / S. F. Sukhanova, A. L. Zasypkin // Feeding of agricultural animals and feed production. -2018. - No. 5. - pp. 60-64.

9. Slavinskaite, I. E. The effectiveness of feed additives in pig breeding / I. E. Slavinskaite, E. G. Gumbatov, S. V. Moshkina // Scientific research on agricultural production: Proceedings of the II International Scientific and Practical Internet Conference, Orel, March 23, 2023. – Orel: Kartouche Publishing House, 2023. – pp. 467-471.

Сведения об авторах

Горлов Иван Федорович - доктор сельскохозяйственных наук, профессор, академик РАН, Поволжский НИИ производства и переработки мясомолочной продукции, г. Волгоград; Раджабов Расим Гасанович - кандидат сельскохозяйственных наук, доцент, Донской государственный аграрный университет, пос. Персиановский. E-mail: rasim.rg@yandex.ru; Гак Юрий Михайлович - кандидат сельскохозяйственных наук, доцент, Донской государственный аграрный университет, пос. Персиановский.

Information about the authors

Gorlov Ivan Fedorovich- Doctor of Agricultural Sciences, Professor, Academician of the Russian Academy of Sciences, Volga Research Institute of Production and Processing of Meat and Dairy Products, Volgograd;

Radzhabov Rasim Gasanovich- Candidate of Agricultural Sciences, Associate Professor, Don State Agrarian University, Persianovsky. E-mail: rasim.rg@yandex.ru;

Gak Yuri Mikhailovich - Candidate of Agricultural Sciences, Associate Professor, Don State Agrarian University, Persianovsky.

УДК 636.2.34

ВЫРАЩИВАНИЕ РЕМОНТНЫХ ТЕЛОК ГОЛШТИНСКОЙ ПОРОДЫ

Каратунов В.А., Кобыляцкий П.С., Каратунова Д.А.

Аннотация: В приведенных исследовательских материалах отражены результаты работы по выращиванию голитинского ремонтного молодняка от рождения до 6месячного возраста в НПХ «Кореновское» Краснодарского края. Основными направлениями данных исследований были: изучить рост и развитие ремонтных телок, изучить физиологические и гематологические показатели, а также определить экономическую эффективность выращивания поголовья. Телки опытной группы в сравнении с контрольной в течении молочного периода выпаивались простоквашей, полученной путем введения маточного раствора муравьиной кислоты в цельное молоко. Использование кисломолочного продукта простокваши в период выпаивания ремонтных телок позволило повысить приросты живой массы и благоприятно повлияло на здоровье животных. Таким образом разработанная технология выращивания ремонтного поголовья с помощью выпойки молока подкисленного муравьиной кислотой для его сквашивания, позволяет обеспечить среднесуточные приросты опытным животным на уровне 900 г в сутки, в 6-месячном возрасте такие животные достигают массы 200 кг, что в среднем на 10-15 кг больше чем у животных выращиваемых без выпойки простокваши.

Ключевые слова: телки голитинской породы, выращивание крупного рогатого скота, рост и развитие крупного рогатого скота, простокваша в кормлении животных, цельное молоко, физиологические и гематологические показатели скота.

RAISING HOLSTEIN REPAIR HEIFERS

Karatunov V.A., Kobylyatsky P.S., Karatunova D.A.

Abstract: The above research materials reflect the results of the work on the cultivation of Holstein repair young animals from birth to 6 months of age in the NPH "Korenovskoye" of the Krasnodar Territory. The main directions of these studies were: to study the growth and development of repair heifers, to study the physiological and hematological parameters, as well as to determine the economic efficiency of raising livestock. The heifers of the experimental group, in comparison with the control group, were watered during the dairy period with curdled milk obtained by introducing a royal jelly solution of formic acid into whole milk. The use of fermented milk product curdled milk during the milking of repair heifers allowed for increased body weight gains and had a beneficial effect on animal health. Thus, the developed technology for growing repair livestock by drinking milk acidified with formic acid for fermentation allows for average daily gains for experimental animals at the level of 900 g per day, at the age of 6 months such animals reach a weight of 200 kg, which is on average 10-15 kg more than in animals raised without drinking yogurt.

Keywords: holstein heifers, cattle breeding, growth and development of cattle, curdled milk in animal feeding, whole milk, physiological and hematological parameters of cattle.

Введение. В Краснодарском крае молочное скотоводство является одной из ключевых отраслей, обеспечивающей жителей региона свежими молочными продуктами. Устойчивое развитие данной отрасли в регионе зависит от обеспечения высококачественного корма, внедрения инновационных технологий в разведении и кормлении, а также улучшения условий работы на молочных фермах [1, 2].

рогатого Кормление крупного скота является основополагающим фактором, определяющим продуктивность, здоровье и рентабельность животноводства. Правильно организованное кормление обеспечивает животных необходимыми питательными веществами для поддержания жизнедеятельности, роста, развития и воспроизводства, а также для реализации генетического потенциала продуктивности [3].

Нарушения в работе пищеварительного тракта молодняка крупного рогатого скота, наиболее часто встречающиеся патологии среди неинфекционных и инфекционных болезней телят от рождения до 6 месяцев, что снижает показатель их сохранности и соответственно наносит производителям животноводческой продукции значительный экономический урон. При этом критический период наибольшего количества падежа животных фиксируется в первые 10 дней после рождения. Переболевшие животные значительно отстают в росте и развитии в сравнении с показателями роста и развития здоровых сверстников, а также в будущей их продуктивности [4].

Исследователи из ВНИИЖ провели работу по изучению влияния подкисленного муравьиной кислотой молока на эффективность выращивания молодняка крупного рогатого скота и доказали что у таких телят в геометрической прогрессии возрастала лизоцимная и бактерицидная активность крови, среднесуточные приросты живой массы возрастали на 11-14%, а фиксируемых случаев расстройств работы пищеварительного тракта снижалось в 2-3 раза, так же отмечен рост жизнеспособности, до 100% сохранности приплода [5, 6].

Данные другого исследования, показали, что телята, которым давали подкисленное молоко муравьиной кислотой (в соотношении 20 мл раствора на 1 л молока), весили на 4,8% больше ровесников, а величина относительных приростов в первые 60 суток выращивания после рождения была на уровне 22,6%. У этих животных практически не фиксировались случаи патологий в работе желудочно-кишечного тракта. Хотя в других группах, где давалось необработанное молоко, 20% телята переболели диспепсией.

На сегодняшний день для сквашивания молока в кормлении молочных телят применяют и другие подкислители – пировиноградная кислота, лимонная и т.д. Исследователи из

Тимирязевского государственного агарного университета разработали закваску Супрасид, которая включает в себя пропионовую (10%), молочную (10%) и муравьиную (40%) кислоты, дионизированную воду (40%), согласно их рекомендаций на 1 л молока вносится 2 мл такого заквасочного раствора.

Также этими же исследователями разработан экспериментальный заквасочный раствор Ацидолакт, который в своем составе имеет: муравьинаю кислоту (60 %), молочную кислоту (10 %), аскорбиновую кислоту (9 %), янтарную кислоту (0,5 %) и лактулозу (20,5 %).

Имеется также препарат Biobon, содержит в своем составе муравьиную кислоту (34%), уксусную кислоту (8,8%), формиат аммония (25%), медь (0,38%) и очищенную воду в качестве растворителя (до 100%) [7].

Хотя они и одного действия и основаны на все тех же однокомпонентных органических кислотах, они имеют некоторые перед ними преимущества:

- 1) Сбалансированное действие: многокомпонентные подкислители могут обеспечить более сбалансированное воздействие на рН корма и желудка телят, что способствует более эффективному усвоению питательных веществ;
- 2) Улучшение вкуса: смешанные кислоты могут улучшать вкус и запах корма, что повышает аппетит и стимулирует потребление корма телятами;
- 3) Широкий спектр действия: разные кислоты воздействуют на разные микроорганизмы, поэтому многокомпонентные смеси могут более эффективно подавлять патогенные бактерии и поддерживать здоровую микрофлору в желудочно-кишечном тракте;
- 4) Комплексный эффект: компоненты в подкислителях совместно работают, усиливая общее действие и обеспечивая более высокий уровень безопасности и эффективности;
- 5) Снижение риска кислотоза: однокомпонентные кислоты могут вызывать резкое снижение рH, что приводит к риску развития хронического кислотоза. Многокомпонентные подкислители помогают избежать таких резких колебаний рH;
- 6) Наличие дополнительных компонентов: многие подкислители содержат добавки, такие как пробиотики или пребиотики, которые могут поддерживать здоровье кишечника и способствовать лучшему росту телят [8].

Актуальность. Телки голштинской породы становятся основой будущего стада, что делает их выращивание актуальной задачей для сельского хозяйства. Молодые животные, находящиеся на стадии роста, довольно чувствительны к изменениям внешних условий окружающей среды и для реализации их генетического потенциала продуктивности необходимо создать все условия содержания и интенсивного кормления, что позволит иметь среднесуточные приросты на уровне 850-1050 г. Эффективное кормление, повышение жизнеспособности и содержание – ключевые аспекты, требующие глубокого анализа и практических решений.

Основа любой технологии разведения крупного рогатого скота это постоянное совершенствование системы организационных, зоотехнических, санитарно-гигиенических и ветеринарных мероприятий, построенной на научном базисе.

Научная новизна. В целях улучшения качества выращивания ремонтных телок голштинской породы в условиях НПХ «Кореновское» Краснодарского края были изучены: рост и развитие, физиологические и гематологические показатели, а также определена экономическая эффективность.

Цель и задачи исследований. Целью данной работы являлось изучение повышения интенсивности роста и развития ремонтных телок голштинской породы в молочный период выращивания за счет использования в кормлении кисломолочного продукта простоквашу.

В задачи исследований входило: изучить рост и развитие ремонтных телок, изучить физиологические и гематологические показатели, а также определить экономическую эффективность.

Условия, материалы и методы исследования. Исследования проводились в НПХ «Кореновское» Краснодарского края. Объектом исследований выступали ремонтные телки голштинской породы.

Для проведения опыта из новорожденного молодняка были сформированы 2 подопытные группы по 10 телочек в каждой. Общее количество подопытных животных составило – 20 голов. Контрольную группу телок кормили основным рационом и выпаивали цельное молоко. Опытной группе телок помимо основного рациона вместо цельного молока выпаивали кисломолочный продукт простоквашу (рисунок 1).

Для приготовления кисломолочного продукта простокваши в молоко добавляли раствор муравьиной кислоты. Метановая (муравьиная) кислота, имеющая концентрацию 85%, разбавлялась с водой для получения маточного раствора соотношении 1:9. Далее приготовленный маточный раствор вливался в молоко в расчете 20 мл. раствора на 1 л. молока. Температура молока при этом была 17 °С. Выдержка сквашенного молока перед выпойкой составляла 6 часов.

С рождения и до 6-месячного возраста телки контрольной и опытной группы содержались в одинаковых условиях. До 3-месячного возраста животные находились в индивидуальных домиках, далее молодняк переводился в корпус в группу 3-6 месяцев и содержание было групповое.

Весовой рост телок изучали по динамике прироста живой массы путем проведения периодических взвешиваний. По данным взвешивания рассчитывали абсолютный и среднесуточный приросты живой массы.

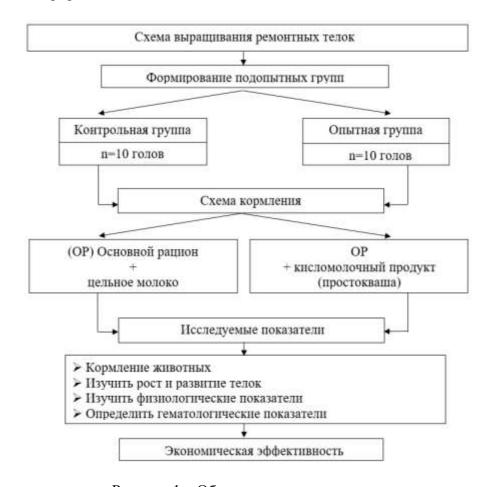


Рисунок 1 – Общая схема исследования

Исследование физиологического состояния телок включало в себя такие показатели как: температура тела, частота дыхания за 1 минуту, пульс. Для этого были отобраны 5 животных из опытной и контрольной групп. Измерение пульса проводились при помощи пальпации артерии в области шеи на протяжении 30 секунд в состоянии покоя. Подсчет частоты дыхания проводились на протяжении 60 секунд при помощи наблюдения дыхательных движений. Температура тела измерялась при помощи ректального термометра на протяжении 2 минут.

Гематологические исследования проводили у животных в 3 и 6 месяцев. Отбор проб крови проводили из яремной вены с использованием моноветов от 5 животных из каждой группы за 2 часа до кормления.

Результаты исследования. Основой стабильного получения молочной и мясной продуктивности крупного рогатого скота всегда является правильная организация технологии их выращивания и кормления с первых дней жизни телят, четкий хронометраж всех зоотехнических операций, рационов и т.д [9]. Кормление телят производилось по следующей схеме (таблица 1).

Таблица 1 – Кормление телят группы 0-3 месяца (в расчете на 1 голову)

Возраст, недель	Возраст, дней	Цельное	Стартер,	Кормосмесь, кг
возраст, недель	возраст, днеи	молоко, литров	КΓ	кормосмесь, кі
1	1-7	6	0,05	-
2	8-14	7	0,2	-
3	15-21	7	0,35	-
4	22-28	7	0,45	-
5	29-35	7	0,55	-
6	36-42	7	0,8	-
7	43-49	7	1,0	-
		Снятие с выпойки		
8	50-56	3	1,2	-
9	57-63	-	1,3	0,2
10	64-70	-	1,5	0,3
11	71-77	-	1,5	0,8
12	78-84	-	1,3	1,5
13	85-92	-	0,2	3,5

Всего за период 0-3 месяца на 1 телку было скормлено: цельного молока -357 л. для контрольной группы и простокваши -357 л. для опытной; стартера -79,1 кг, кормосмеси -42 кг. На 8 неделе ремонтный молодняк полностью снимался с выпойки и переходил на кормосмесь по схеме.

В таблице 3 и 4 представлен состав кормосмеси и комбикормов используемых в кормлении животных до 6-месячного возраста.

Таблица 2 – Состав кормосмеси для молодняка группы 3-6 мес. на 1 кг/гол.

№ п/п	Компоненты	Количество, кг (НВ)	Количество, кг (CB)
1	Комбикорм	2,14	2,14
2	Сенаж люцерновый	1,44	0,63
3	Силос кукурузный	3,98	2,27
	Итого	7,55	5,04

Анализируя рост живой массы голштинских телок, выращиваемых с использованием в рационе питания подкисленного сквашенного молока, мы установили, что опытные животные значительно превосходили своих контрольных сверстников (рисунок 2). В созданных условиях питания и содержания телки подопытных групп достигли живой массы – 185-196 кг к 6 месячному возрасту.

В результате изучения динамики среднесуточных приростов голштинских телят было установлено, что с рождения до 6-месячного возраста животные опытной группы превосходили своих сверстников на 64 г или 7.1%, при P < 0.001.

Таблица 4 – Состав комбикорма для телок

№ п/п	Наименование	Комб	икорм
	компонента	%	КГ
1	Шрот подсол.	10,0	100
2	Жмых соевый	20,0	200
3	Ровимикс 4805	2,5	25
4	Пшеница	15,0	150
5	Кукуруза	25,0	250
6	Ячмень	25,9	259
7	Соль	0,6	6
8	Мел	1,0	10
	итого	100	1000

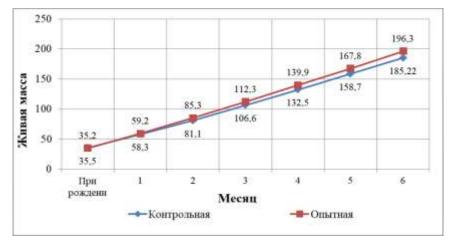


Рисунок 2 – Изменение живой массы подопытных животных

Если рассматривать по периодам выращивания, то среднесуточные приросты в возрастной период 0-3 месяцев были выше на 66 г или 7,7%, при P < 0,001; а в возрасте с 3 до 6 месяцев на 60 г или 6,7% при P < 0,001 (рисунок 3).

Рисунок 3 – Данные среднесуточных приростов молодняка

Показатели линейного роста голштинских телят, которым выпаивали подкисленное муравьиной кислотой молоко, позволяют судить об достаточном уровне их конституции и нормальном формировании телосложения (таблица 5).

Таблица 5 – Промеры телосложения подопытных телок, см, М±m, n=5

			Показатели промеров телосложения телок, см							
Месяц	Группа	высота холки	высота крестца	ширина груди	глубина груди	косая длина туловища	обхват груди	ширина маклаков	ширина седалищных бугров	обхват пясти
3	Контрольная	77,6±0,8	75±0,8	18±0,7	37±0,6	58±0,6	78±0,8	14±0,3	10±0,3	13±0,3
3	Опытная	81,3±1,0	78±0,8	22±1,0	40±0,6	60±0,7	81±0,8	15±0,3	11±0,5	14±0,3
	Контрольная	104±0,8	112±0,8	28±0,6	44±0,8	113±0,7	122±0,8	27±0,5	14±0,3	14±0,3
6	Опытная	108±1,0	114±0,6	30±0,8	45±0,6	115±1,0	124±0,8	29±1,0	15±0,5	15±0,3

Согласно представленным выше данным, в 6-месячном возрасте у голштинских телок опытной группы было зафиксировано значительное превосходство над сверстницами контрольной группы по высоте в холке, высоте в крестце, ширине груди за лопатками, глубине груди и косой длине туловища соответственно на 4, 3, 4, 3, 2 см, при P < 0.001.

Оценка клинико-физиологических параметров позволила выявить общее состояние здоровья животных, которое напрямую связано с их ростом, развитием и будущей продуктивностью [10]. Опытные голштинские телята выращивались по интенсивной технологии в стандартных условиях содержания и кормления, что способствовало стабильным этологическим и физиологическим показателям (таблица 6).

Таблица 6 – Этология и физиология подопытных животных, М±m, n=5

			Клинические показатели			
Грудино донат	Температура тела, °С		Частота пульса в		Частота дыхания в	
Группа телят			минуту		минуту	
	3 мес.	6 мес.	3 мес.	6 мес.	3 мес.	6 мес.
Контрольная	38,7±0,3	38,4±0,3	75,3±1,8	67,1±2,7	91,8±3,2	66,5±2,3
Опытная	38,1±0,2	38,2±0,3	71,6±2,4	65,0±1,4	87±2,9	60,0±2,8
Норма	38,5-	-39,5	70-	100	50-	-90

Достоверно оценить здоровье подопытных животных позволяют исследования их общего состава крови. Гематологические показатели определяли в 3- и 6-месячном возрасте. Показатели крови (эритроциты, лейкоциты, гемоглобин и общий белок) находились в пределах физиологической нормы, при этом в 6 месяцев у опытных животных частота пульса в минуту была ниже на 6,6 ударов в минуту, при P < 0,001, а частота дыхания на 27 при P < 0,001, в сравнении с контрольными, это свидетельствовало о том что у первых была более устойчивая нервная система и они не испытывали дискомфорта при выращивании и кормлении.

После завершения научно-хозяйственного опыта была определена экономическая эффективность исследований (таблица 7).

Уровень рентабельности выращивания животных в опытной группе был выше на 3,3%, себестоимость каждого кг прироста живой масса на 0,6 руб., прибыль на 4070 руб на одну голову.

Таблица 7 – Показатели экономики выращивания голштинских ремонтных телок

Показатели	Единица	Группы т	елят
Показатели	измерения	контрольная	опытная
Живая масса	КГ	185	196
Среднесуточный прирост	Γ	831	895
Общие затраты	тыс. руб.	63912	67712
Себестоимость 1 кг прироста живой массы	руб.	345,4	346,0
Цена «условной» реализации 1 кг живой массы	тыс. руб.	370,0	370,0
Выручка	тыс. руб.	68450	72520
Уровень рентабельности	%	7,1	10,4

Выводы. Разработанная технология содержания и выращивания ремонтных телок голштинской породы, с использованием в рационах кормления подкисленного молока муравьиной кислотой для его сквашивания в простоквашу, позволяет обеспечить суточные приросты живой массы на уровне 890-910 г при достижении абсолютной живой массы 196-200 кг в 6 месяцев. Наряду с этим повышается уровень сохранности поголовья молодняка до 100% и у особей практически отсутствуют патологии в работе желудочно-кишечного тракта. Все это позволяет значительно повысить рентабельность молочного скотоводства в животноводческих хозяйствах.

Список литературы

- 1. Волгин В.И., Выращивание племенных телок черно-пестрой породы голштинского происхождения / В.И. Волгин, Л.В. Романенко, З.Л. Федорова / Главный зоотехник. 2011. N 3. C. 8-14.
- 2. Горлов И.Ф. Влияние генетической принадлежности на молочную продуктивность и качество молока коров голштинской породы / И.Ф. Горлов, М.И. Сложенкина, О.П. Шахбазова, Р.Г. Раджабов, Е.Ю. Анисимова / Аграрный вестник Урала. 2025. Т. 25. № 4. С. 606-618.
- 3. Зеленков П.И. Влияние интенсивного выращивания голштинских телок на эффективность их осеменения / П.И. Зеленков, А.Л. Алексеев, В.А. Каратунов, П.С. Кобыляцкий / В сборнике: Инновации в науке, образовании и бизнесе основа эффективного развития АПК. Материалы международной научно-практической конференции, посвященной 135-летию со дня рождения классика русской зоотехнической науки, организатора и руководителя высшего зоотехнического образования профессора Малигонова А.А.: В 4-х томах. 2011. С. 79-81.
- 4. Каратунов, В.А. Биохимические показатели крови голштинских коров австралийской селекции, выращенных по интенсивной технологии / В.А. Каратунов, А.С. Чернышков, П.С. Кобыляцкий // Вестник Донского государственного аграрного университета. -2019. -№ 4-1(34). C. 62-68.
- 5. Каратунов В.А. Влияние интенсивной технологии выращивания голштинских телок на их поведенческие реакции / В.А. Каратунов, П.С. Кобыляцкий, А.С. Чернышков / Вестник Донского государственного аграрного университета. 2019. № 3-1 (33). С. 25-29.
- 6. Кобыляцкий, П.С. К вопросу подбора быков-производителей для улучшения дойного стада красной степной породы / П.С. Кобыляцкий, В.А. Каратунов, Т.И. Тупольских // Вестник Донского государственного аграрного университета. 2023. \mathbb{N} 4 (50). С. 92-100.
- 7. Обрушникова, Л.Ф. Экстерьерные особенности, молочная продуктивность и качество молока коров красной степной породы при использовании в рационах новых пребиотических кормовых добавок / Л.Ф. Обрушникова, М.И. Сложенкина, И.Ф. Горлов, Д.В. Николаев, С.А. Суркова, С.А. Брехова // Животноводство и кормопроизводство. 2023. Т. 106. № 2. С. 63-74.
- 8. Хорошевская, Л.В. Эффективность современных технологий производства молочной

- продукции на современных молочных комплексах / Л.В. Хорошевская, И.Ф. Горлов, М.И. Сложенкина, А.П. Хорошевский, В.А. Пузанкова // Эффективное животноводство. 2023. \mathbb{N} 6 (188). С. 69-71.
- 9. Gorlov, I.F. The genetic productivity potential of Holstein heifers of different selections in conditions of the Volgograd region / Gorlov I.F., Slozhenkina M.I., Kaidulina A.A., Surkova S.A., Barmina T.N., Slozhenkin A.B. // В сборнике: IOP Conference Series: Earth and Environmental Science. Krasnoyarsk Science and Technology City Hall. Krasnoyarsk, Russian Federation, 2021. C. 22096.
- 10. Bakharev, A.A. Evaluation of bulls-producers of the holstein breed in the conditions of a large dairy complex / A.A. Bakharev, O.M. Sheveleva, V.O. Tsyganok, A.M. Bekshenova, A.G. Koshchaev, E.A. Gyrnets // Proceedings of the Kuban State Agrarian University. 2022 №100.

References

- 1. Volgin V.I., Rearing breeding heifers of Holstein black-and-white breed / V.I. Volgin, L.V. Romanenko, Z.L. Fedorova / Chief zootechnician. 2011. № 3. pp. 8-14.
- 2. Gorlov I.F. Influence of genetic affiliation on milk productivity and milk quality of Holstein cows / I.F. Gorlov, M.I. Skladenkina, O.P. Shakhbazova, R.G. Radzhabov, E.Yu. Anisimova / Agrarian Bulletin of the Urals. 2025. Vol. 25. No. 4. pp. 606-618.
- 3. Zelenkov P.I. The influence of intensive cultivation of Holstein heifers on the effectiveness of their insemination / P.I. Zelenkov, A.L. Alekseev, V.A. Karatunov, P.S. Kobylyatsky / In the collection: Innovations in science, education and business the basis for the effective development of agriculture. Materials of the international scientific and practical conference dedicated to the 135th anniversary of the birth of the classic of Russian zootechnical science, organizer and head of higher zootechnical education, Professor A.A. Malygonova: In 4 volumes. 2011. pp. 79-81.
- 4. Karatunov, V.A. Biochemical blood parameters of Holstein cows of Australian breeding, grown using intensive technology / V. A. Karatunov, A. S. Chernyshkov, P. S. Kobylyatsky // Bulletin of the Don State Agrarian University. -2019. № 4-1(34). pp. 62-68.
- 5. Karatunov V.A., Kobylyatsky P.S., Chernyshkov A.S. The influence of intensive technology of growing Holstein heifers on their behavioral reactions / Bulletin of the Don State Agrarian University. 2019. № 3-1 (33). pp. 25-29.
- 6. Kobylatsky, P.S. On the issue of selecting breeding bulls to improve the milking herd of the red steppe breed / P.S. Kobylatsky, V.A. Karatunov, T.I. Tupolskikh // Bulletin of the Don State Agrarian University. 2023. N 4 (50). pp. 92-100.
- 7. Obrushnikova, L.F. Exterior characteristics, milk yield and milk quality of the cows of Red Steppe Breed/ L.F. Obrushnikova, M.A. Tuchenkina, I.F. Gorlov, D.V. Nikolaev, S.A. Surkova, S.A. Brehova / / Livestock and steering. 2023. T. 106. № 2. pp. 63-74.
- 8. Khoroshevskaya, L.V. Efficiency of modern technologies of dairy production at modern dairy complexes / L.V. Khoroshevskaya, I.F. Gorlov, M.I. Slozhenkina, A.P. Khoroshevsky, V.A. Puzankova // Efficient animal husbandry. 2023. № 6 (188). pp. 69-71.
- 9. Gorlov, I.F. The genetic productivity potential of Holstein heifers of different selections in conditions of the Volgograd region / I.F. Gorlov, M.I. Slozhenkina, A.A. Kaidulina, S.A. Surkova, T.N. Barmina, A.B. Slozhenkin // В сборнике: IOP Conference Series: Earth and Environmental Science. Krasnoyarsk Science and Technology City Hall. Krasnoyarsk, Russian Federation, 2021. P. 22096.
- 10. Bakharev, A.A. Evaluation of bulls-producers of the Holstein breed in the conditions of a large dairy complex / A.A. Bakharev, O.M. Sheveleva, V.O. Tsyganok, A.M. Bekshenova, A.G. Koshchaev, E.A. Gyrnets // Proceedings of the Kuban State Agrarian University. 2022 №100.

Сведения об авторах:

Каратунов Вячеслав Анатольевич, доктор с.-х. наук, доцент кафедры физиологии и кормления с.-х. животных ФГБОУ ВО Кубанский ГАУ им. И.Т. Трубилина, E-mail: karatunov1982@yandex.ru;

Кобыляцкий Павел Сергеевич, кандидат с.-х. наук, доцент кафедры пищевых технологий ФГБОУ ВО ДГАУ, E-mail: kpspersia@mail.ru, 8 (86360) 3-63-77

Каратунова Дарья Александровна, бакалавр юридического факультета, группа ЮФ2308, ФГБОУ ВО Кубанский ГАУ им. И.Т. Трубилина, E-mail: <u>dora_karat@mail.ru.</u>

Information about the authors:

Karatunov Vyacheslav Anatolyevich, Doctor of Agricultural Sciences, Associate Professor of the Department of Physiology and Feeding of Agricultural Animals, I.T. Trubilin Kuban State Agrarian University, E-mail: karatunov1982@yandex.ru

Kobylyatsky Pavel Sergeevich, Candidate of Agricultural Sciences, Associate Professor of the Department of Food Technologies, FSBEI of Higher Education «Don State Agrarian University», E-mail: kpspersia@mail.ru, 8 (86360) 3-63-77

Karatunova Daria Alexandrovna, Bachelor of the Faculty of Law, SF2308 group, Kuban State University named after I.T. Trubilin, E-mail: dora_karat@mail.ru

УДК 636.2.34

ИСПОЛЬЗОВАНИЕ КОРОВ ГОЛШТИНСКОЙ ПОРОДЫ В УСЛОВИЯХ МОЛОЧНО-ТОВАРНОГО КОМПЛЕКСА УОХ «КРАСНОДАРСКОЕ»

Каратунов В.А., Кобыляцкий П.С., Кирпенко А.М.

Аннотация: В приведенных исследовательских материалах отражены результаты работы по изучению влияние кормовых добавок Био Токс, Мегабуст Румен и Премикса П60 на количественные и качественные показатели молока голитинских коров. В результате использования в составе рационов кормовых добавок животные опытной группы имели значительно более высокие удои и превосходили аналогов по этому показателю на 10%. Превосходство было установлено и по содержанию молочного жира на 4,11% и белка на 2,48%. Органолептические показатели молока были в норме в контрольной и опытной группах. Кормовые добавки не изменяли цвет, запах и консистенцию молока. Прибыль у животных опытной группы составила 169024,41 руб., у животных контрольной группы была значительно ниже — 148691,92 руб. Закономерно уровень рентабельности производства молока был выше в опытной группе на 10%. Для повышения количественных и качественных показателей молока лактирующим голитинским коровам в хозяйстве целесообразно и экономически выгодным вводить в рацион кормовые добавки Био Токс в количестве — 25 г/гол./сут., Мегабуст Румен — 70 г/гол./сут., Премикс П60 — 60 г/гол./сут.

Ключевые слова: коровы голитинской породы, молочная продуктивность голитинских коров, физико-химические показатели молока, цельное молоко, удои молока, физиологические и гематологические показатели скота, рентабельность производства молока.

THE USE OF HOLSTEIN COWS IN THE CONDITIONS OF THE KRASNODARSKOYE DAIRY COMPLEX

Karatunov V.A., Kobylyatsky P.S., Kirpenko A.M.

Abstract: The above research materials reflect the results of the work on the study of the effect of feed additives Bio Tox, Megabust Rumen and Premix P60 on the quantitative and qualitative indicators of milk from Holstein cows. As a result of using feed additives in the diets, the animals of the experimental group had significantly higher milk yields and exceeded their counterparts in this

indicator by 10%. The superiority was also found in the content of milk fat by 4.11% and protein by 2.48%. The organoleptic parameters of milk were normal in the control and experimental groups. The feed additives did not change the color, odor, or consistency of the milk. The profit of the experimental group animals was 169024.41 rubles, in the animals of the control group it was significantly lower – 14,8691.92 rubles. Naturally, the profitability of milk yield was 10% higher in the experimental group. To increase the quantitative and qualitative indicators of milk for lactating Holstein cows on the farm, it is advisable and economically advantageous to introduce Bio Tox feed additives in the amount of 25 g/head/day, Megabust Rumen – 70 g/head/day, Premix P60 – 60 g/head/day.

Keywords: Holstein cows, milk yield of Holstein cows, physico-chemical parameters of milk, whole milk, milk yield, physiological and hematological parameters of livestock, profitability of milk yield.

Введение. Краснодарский край традиционно является одним из ведущих регионов в развитии молочного скотоводства. Наличие мощной кормовой базы и развитой инфраструктуры создает благоприятные предпосылки для внедрения интенсивных технологий. В то же время, жаркий летний период с высокими температурами и влажностью воздуха представляет серьезную проблему для содержания высокопродуктивных животных голштинской породы, нуждающихся в оптимальном микроклимате [1].

В России голштинский скот начали завозить еще в 1956 году. Благодаря развитию зоотехнических технологий и селекционно-племенной работы, голштинский скот отличается высокой молочной продуктивностью. На сегодняшний день голштинская порода по праву считается самой высокопродуктивной молочной породой в мире, не имеющей себе равных по удоям [2]. Также скот голштинской породы характеризуется скороспелостью, высокой адаптивностью к новым условиям окружающей среды, хорошей оплатой корма, а также высокой мясной и молочной продуктивностью - индекс вымени составляет 42-45%, что позволяет голштинской породе конкурировать с другими молочными породами по размеру вымени. Хорошо приспособлен к машинному доению [3]. В настоящее время голштинский скот распространен повсеместно и широко используется для скрещивания с различными породами с целью их улучшения, имеет черно-пеструю или красно-пеструю масть с отметинами разного размера [4].

Голштинская порода отличается хорошим здоровьем и важным качеством — высокой приспособленностью к условиям промышленного содержания. Ориентированная на молочное направление продуктивности, порода демонстрирует менее выраженные мясные качества, убойный выход составляет 50-55% [5].

Голштинская порода широко используется для улучшения молочной продуктивности других пород путем скрещивания. Ее кровь присутствует во многих молочных породах по всему миру [6, 7].

В качестве базы для нашего научного исследования был выбран племзавод учебноопытного хозяйства УОХ «Краснодарское», связанный с Кубанским государственным аграрным университетом имени И.Т. Трубилина и расположенный в пригородной зоне Краснодара.

Учебно-опытное хозяйство «Краснодарское», базирующееся в поселке Лазурный, располагает обширными сельскохозяйственными землями, общая площадь которых составляет — 3755 га, при этом — 3146 га приходится на пахотные земли. Штат предприятия насчитывает около 180 сотрудников, из которых 54 человека заняты в животноводческом секторе. Данный факт подчеркивает значимость хозяйства как образовательного центра, обеспечивающего практическую подготовку будущих аграрных специалистов, а также как площадки для проведения научных исследований в сфере сельского хозяйства.

Приоритетными направлениями деятельности УОХ «Краснодарское» являются молочное скотоводство и растениеводство. Животноводческое направление включает в себя разведение и содержание молочного стада, а растениеводческое – культивирование

сельскохозяйственных культур, обеспечивающих кормовую базу для животных и возможность реализации излишков продукции.

Основу молочного стада составляет голштинская порода крупного рогатого скота чернопестрой масти, отличающаяся высокой молочной продуктивностью (рисунок 1). Дополнительно, в хозяйстве представлено небольшое поголовье джерсейской породы, характеризующейся повышенной жирностью молока.

Молочная ферма УОХ «Краснодарское» функционирует по принципу полного производственного цикла, охватывающего все этапы: от отела и выращивания молодняка до взрослого состояния, получения и реализации молока, а также продажи и откорма бычков с последующей сдачей на мясоперерабатывающие предприятия.

На 1 июня 2025 года всего на ферме насчитывается 3305 голов из них 965 голов дойных коров. Производительность молока в сутки летом 38000-39000 кг, средний надой — 40,3 кг. Зимой 48000-49000 кг, средний надой — 45 кг.

Дойное стадо содержится в 6 корпусах, сделанных из кирпича. Корпус рассчитан на 200 голов. Способ содержания – беспривязный, с автономным микроклиматом в помещениях - имеются системы распыления воды (спрейеры): распыляют воду в воздух, создавая туман, который охлаждает воздух, так же есть воздуховод, распределяющий свежий воздух по всему помещению, а также удаляющий загрязненный воздух. Доильный зал — европейская параллель от компании «DeLaval» на 36 мест, доение трехразовое.

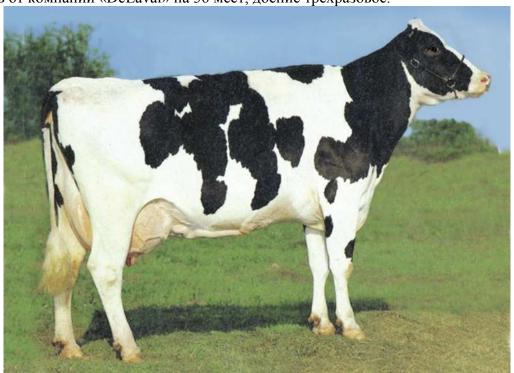


Рисунок 1 – Корова голштинской породы УОХ «Краснодарское»

Актуальность. Использования коров голштинской породы в условиях молочно-товарного комплекса УОХ «Краснодарское» обусловлено необходимостью реализации высокого генетического потенциала молочной продуктивности современных пород, что невозможно без оптимизации питания. Важно сбалансировать рационы по питательным веществам, микроэлементам и витаминам для поддержания здоровья коров и профилактики заболеваний, особенно в период раздоя. Кормовые добавки влияют на состав молока, повышая содержание ценных компонентов. Они также помогают предотвратить метаболические нарушения, такие как кетоз и ацидоз, и улучшить переваримость кормов [8].

Научная новизна. В целях улучшения производства молока в дойном стаде голштинского скота в условиях молочно-товарного комплекса УОХ «Краснодарское» Краснодарского края были изучены влияние кормовых добавок на качественные и

количественные показатели их молока.

Цель и задачи исследований. Цель работы установить степень влияния кормовых добавок на физико-химические и количественные показатели молока голштинского скота в условиях УОХ «Краснодарское».

Для достижения намеченной цели необходимо решить следующие задачи:

- Изучить структуру рационов подопытных животных;
- Изучить переваримость кормов;
- Определить конверсию корма;
- Изучить молочную продуктивность и качественные показатели молока;
- Изучить гематологические показатели крови;
- Определить экономическую эффективность.

Условия, материалы и методы исследования. Для проведения опыта были отобраны коровы по 2 лактации и сформированы 2 подопытные группы по 20 животных в каждой. Общее количество подопытных животных составило — 40 голов (рисунок 2). Контрольную группу дойных коров кормили основным рационом, без добавления кормовых добавок. Опытной группе к основному рациону добавляли кормовые добавки: Био Токс, Мегабуст Румен, Премикс П60 в период лактации (рисунок 3).

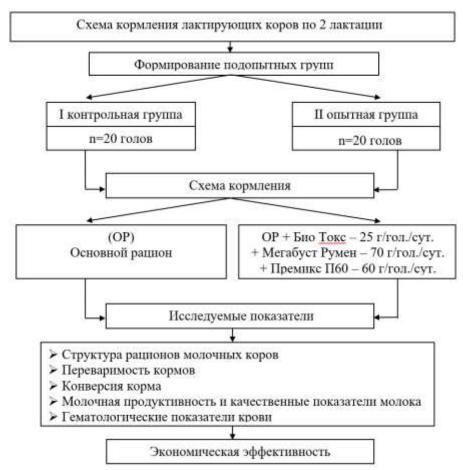


Рисунок 2 – Общая схема исследования

В процессе проведения опыта были исследованы следующие направления:

- 1. Структура рационов молочных коров. Рацион балансировали по всем показателям в соответствии с потребностью в энергии и питательных веществах. Учитывали возраст, физиологическое состояние, технологические параметры, состав и питательность кормов. Рассчитывали процентное соотношение отдельных видов или групп кормов, которое определяет тип кормления животного.
- 2. Переваримость кормов. Для определения переваримости корма использовали специальное сито «Руменбокс», которое разделяет навоз на фракции по размеру частиц.

Навоз – это зеркало работы рубца. Оценка навоза позволяет получить ценную информацию об эффективности рубцового пищеварения и переваримости рациона.

3. Конверсия корма. Конверсия корма (коэффициент конверсии корма, FCR) считается как отношение количества израсходованного корма к полученной продукции. Рассчитывали по формуле: конверсия корма (FCR) = Количество израсходованного корма (кг) / Полученная продукция (кг).

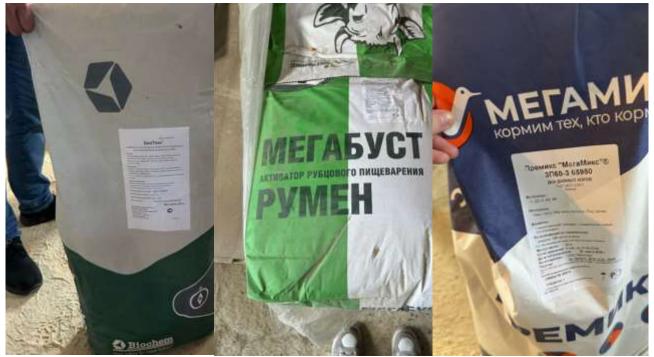


Рисунок 3 – Коромовые добавки Био Токс, Мегабуст Румен и Премикс П60

- 4. Молочная продуктивность и качественные показатели молока. Отбирали пробы от каждой группы коров, с учетом удоя, количества жира и белка в молоке, и соответственным расчетом за 305 дней лактации. Также определяли СОМО (содержание сухого молочного остатка), плотность и кислотность. Органолептические свойства: цвет, консистенцию определяли глазомерным методом, а запах ольфакторным методом.
- 5. Гематологические показатели крови. Проведение анализа гематологических показателей крови у животных осуществлялось в 3 месяце 2 лактации путем взятия крови у 20 особей из каждой подопытной группы до кормления из подхвостовой вены с использованием вакуумных систем.

Количество лейкоцитов и эритроцитов, уровень гемоглобина, резервную щелочность, общий белок, кальций, фосфор, каротин определяли с помощью биохимического анализатора «Vitalab Flexor E».

Организация кормления коров голштинской породы включает в себя планирование рациона, выбор кормов, соблюдение режима кормления и обеспечения необходимым количеством воды (таблица 1).

Таблица 1 – Структура рациона

таолица т Структура	рациона
Наименование корма	НВ, кг/гол
Комбикорм ЛК-1Ф	10,1490
Силос люцерна (2024 г)	3,6000
Сенаж люцерна 2024 /2 укос	3,5000
Сенаж тритикале 2024 года	23,2000
Вода	2,1000
Итого:	42,549

Правильное соотношение компонентов обеспечивает нормальное функционирование рубца, удовлетворяет потребность животных в энергии и питательных веществах, способствует высокой молочной продуктивности, улучшает качество молока (таблица 2).

Таблица 2 – Рацион для лактирующих коров подопытных групп (ЛК-1Ф)

Корма	Корма Фактич		кая загрузка	Cyxoe i	вещество
Описание	CB,%	Кг\гол	% рациона	Кг\гол	% рациона
Комбикорм	89,50	10,1490	23,85	9,0834	45,36
Сенаж люцерна	36,00	3,6000	8,46	1,2960	6,47
Сенаж тритикале	37,00	3,5000	8,23	1,2950	6,47
Силос люцерна	36,00	23,2000	54,53	8,3520	41,71
Вода	-	2,1000	4,94	-	0,00
Итого:	-	42,549	100	20,0264	100

В данном рационе корма по СВ (%) находятся в пределах нормы, что свидетельствует о соблюдении технологии заготовки кормов и обеспечивает их хорошее качество.

Для сенажа норма находится в диапазоне от 35 до 45%, для силоса из зерносенажа 35-40%. Соотношение объемистых кормов и концентратов 75%:25%, или 3:1, так же указывает на использование собственных кормов. В день лактирующие коровы получают 42,549 кг/гол корма.

Структура рациона, включает в себя: силос люцерны, сенаж люцерны и сенаж тритикале. Гарантирует поступление в организм коров достаточного количества клетчатки, необходимой для здоровья рубца и эффективного переваривания кормов.

Использование люцерны в различных формах (сенаж и силос) позволяет обеспечить коров ценным протеином и другими питательными веществами, необходимыми для высокой молочной продуктивности (таблица 3).

Таблица 3 – Состав комбикорма для лактирующих коров 2 группы (ЛК-1Ф)

Номер	Наименования	Структура %	Тонны
1	Ячмень	6,69	66,85
2	Кукуруза	41,78	417,82
5	Соя Байпас	15,04	150,41
6	Глютен 51%	4,60	45,96
7	Глютен 19%	5,01	50,14
8	Био Токс	0,13	1,25
9	Защ. Жир 84%	2,51	25,07
10	Оксид Магния	0,50	5,01
11	Сода	1,50	15,04
12	Соль	0,75	7,52
13	Мел	1,59	15,88
14	Шрот рапсовый	18,38	183,84
15	Премикс Дойные П60 (1-2%)	0,58	5,85
16	МегаБуст Румен	0,64	6,43
17	Трикальций фосфат	0,29	2,92
	Итого:	100%	1000,0

БиоТокс – сорбент микотоксинов для применения в комбикормах. Эффективно связывает микотоксины, как, например, афлатоксины, охратоксины, токсины грибков вида Fusarium (зеараленон, вомитоксин, Т-2 токсин, фумонизины) и другие. Предупреждает неблагоприятное воздействие микотоксинов на организм животных. Сокращает риск микотоксикозов и в связи с этим обеспечивает сохранность поголовья. Повышает продуктивность животных. Снижает бактериальную деградацию питательных веществ и

улучшает усвоение белка. Представлен в виде порошка серого цвета.

Мегабуст Румен является активатором рубцовой микрофлоры экстракта инактивированного Trichoderma longibrachiantum ферментационного специализированного штамма дрожжей Saccharomyces cerevisiae. Увеличивает микробиом рубца до + 30%, повышает перевариваемость клетчатки всех фракций и крахмала рациона, уменьшает твердый остаток навоза на одном сите — менее 10%, снижает содержание НДК и КДК в навозе на 7% по сравнению с контролем, а лигнина на 21%. Нейтрализует избыточную кислотность в рубце, поддерживая оптимальную рН для жизнедеятельности рубцовой микрофлоры. Предотвращает развитие ацидоза рубца, который может возникнуть при кормлении большим количеством легкоферментируемых углеводов (зерно, силос). Сами специализированные дрожжи стимулируют рост и активность рубцовой микрофлоры.

Премикс П60 – кормовая добавка для увеличения надоев, улучшения качества молока и укрепления здоровья коров, которая повышает надои и качество молока (жирность, белок), укрепляет иммунитет и снижает заболеваемость, компенсирует дефицит витаминов и минералов, улучшает усвояемость кормов, повышает рентабельность молочного животноводства.

Состав комбикорма для лактирующих коров группы ЛК-1Ф демонстрирует комплексный и продуманный подход к обеспечению животных всеми необходимыми питательными веществами для поддержания высокой молочной продуктивности.

Основой комбикорма является кукуруза — 41,78%, что обеспечивает животных энергией, необходимой для выработки молока. Добавление ячменя — 6,69% способствует улучшению структуры комбикорма и обеспечивает дополнительный источник углеводов.

Важным компонентом является соя байпас -15,04% и шрот рапсовый -18,38%, которые служат источниками высококачественного протеина, необходимого для синтеза молочного белка. Использование байпасного протеина (соя байпас) позволяет повысить эффективность использования протеина за счет снижения его распада в рубце.

Включение в состав комбикорма защищенного жира (84%) в количестве 2,51% направлено на повышение энергетической ценности рациона без риска негативного воздействия на микрофлору рубца. Защищенный жир является источником незаменимых жирных кислот, необходимых для поддержания здоровья и репродуктивной функции коров.

Защищенный жир 99% и 84% — форма жира, обработанная, чтобы предотвратить его расщепление в рубце. Вместо этого, он проходит через рубец в неизмененном виде и переваривается, и всасывается в тонком кишечнике. Если говорить о 99% то, это значит степень защищенности жира в процентах.

Использование двух разных видов защищенного жира в рационе коров — это рекомендуемая практика, позволяющая оптимизировать кормление и добиться более выраженного результата.

Наличие в составе комбикорма источников минеральных веществ, таких как мел -1,59%, трикальцийфосфат -0,29%, оксид магния -0,50%, соль -0,75% и сода -1,50%, свидетельствует о обеспечении животных необходимыми макро- и микроэлементами, важными для поддержания здоровья костей, обмена веществ и предотвращения метаболических нарушений.

Использование премикса $\Pi60-0.58\%$ гарантирует поступление в организм коров необходимых витаминов и микроэлементов, которые могут быть недостаточно представлены в основных кормах.

Добавление МегаБуст Румен – 0,64% направлено на поддержание оптимального pH рубца и улучшение переваримости кормов.

Включение в состав комбикорма Био Токс -0.13% является профилактической мерой, направленной на снижение риска негативного воздействия микотоксинов на организм коров.

Определение переваримости кормов с использованием специального сита, такого как «Руменбокс» (Rumenbox), представляет собой экспресс-метод оценки, имитирующий процесс переваривания в рубце жвачных животных (рисунок 4).

Рисунок 4 – Оценка переваримости корма экспресс-методом

Эта методика позволяет быстро получить информацию о потенциальной переваримости корма, что важно для составления рационов и оптимизации кормления.

Метод основан на принципе промывания образца корма водой через сито с определенным размером ячеек. Процесс имитирует действие рубца, где пища постоянно перемешивается и измельчается. Частицы корма, прошедшие через сито, считаются более легко переваримыми, а оставшиеся на сите — менее переваримыми.

Образец 1 (слева): имеет темный, зеленовато-коричневый цвет. Структура мелкоизмельченная, однородная, волокна короткие и мягкие на вид. Такой внешний вид говорит о высокой степени переваримости. Этот образец будет иметь высокое содержание легкоусвояемых питательных веществ.

Образец 2 (в центре): имеет более светлый, желтовато-коричневый цвет. Структура волокнистая, но волокна немного грубее, чем в первом образце. Это может быть сенаж или сено среднего качества. Переваримость будет ниже, чем у первого образца, но все еще приемлемая.

Образец 3 (справа): имеет светло-желтый, соломенный цвет. Структура грубая, волокна длинные и жесткие на вид. Это, скорее всего, солома или перезревшее сено. Переваримость крайне низкая. Этот образец, в основном, содержит непереваримую клетчатку и имеет низкую питательную ценность. То есть, кормовые добавки повышают переваримость кормов у опытной группы.

Результаты исследования. Конверсия корма (Feed Conversion Ratio, FCR) — это показатель, который отражает эффективность использования корма животными для производства продукции. В общем смысле, это количество корма, необходимое для получения единицы продукции. Рассчитывали по формуле: конверсия корма (FCR) = Количество израсходованного корма (кг) / Полученная продукция (кг) (таблица 4).

Таблица 4 – Расчет конверсии корма за период 2-ой лактации

Показатель	Показатели по группам		
	1	2	
Годовое потребление кормосмеси, кг/гол	12977,45±96	12977,45±106	
Средний удой за 2-ю лактацию, кг/гол	10493±75	11457±98	
Конверсия корма, кг	1,24±0,15	1,13±0,11	

Опытная группа, при одинаковом количестве потребляемого корма, продемонстрировала более высокую молочную продуктивность и, соответственно, лучшую конверсию корма. Это говорит о более эффективном использовании кормовых добавок животными в опытной группе.

Молочная продуктивность — это показатель, характеризующий способность сельскохозяйственных животных производить молоко. Она является одним из основных критериев оценки эффективности молочного животноводства и зависит от множества факторов (таблица 5).

Таблица 5 — Молочная продуктивность по 2-ой лактации, $M \pm m$, n = 20

Наименование показателя	Показатели по группам	
	1 2	
2-я лактац	ия	
Удой за 2-ю лактацию, кг	10493±49,1	11457±42,9
Живая масса коров, кг	613,7±1,24	654,9±1,06
Вычисление количества, кг:		
По молочному жиру	398,1±1,62	436,5±1,46
По молочному белку	337,1±2,1	367±1,98
Величина коэффициента молочности, кг	1709±1,8	1749,4±1,3

Анализ таблицы 5 показывает, что опытная группа имеет значительно более высокий удой $-11457~\rm kr$, чем контрольная группа $-10493~\rm kr$ и превосходит на 9,19%, при P<0,001, а также имеет большую живую массу $-654,9~\rm kr$, чем контрольная $-613,7~\rm kr$ и превосходит на 6,71%, при P<0,001.

Опытная группа показывает более высокие результаты по содержанию молочного жира — $436,5~\rm kr$ и белка — $367~\rm kr$ в молоке, чем контрольная — $398,1~\rm kr$ молочного жира и $337,1~\rm kr$ белка соответственно, при P < 0,001, превосходит на 9,65% по молочному жиру и на 8,87% по белку, при P < 0,001, более высокий коэффициент молочности —1749,4, чем контрольная — $1709,1~\rm u$ превосходит на 2,36%, при P < 0,001. Этот показатель отражает эффективность преобразования корма в молоко.

Учитывая, что опытная группа демонстрирует превосходство по всем перечисленным показателям, можно сделать вывод, что использование добавок Био Токс, Мегабуст Румен и Премикса П60 оказало положительное влияние на молочную продуктивность и качественные характеристики молока.

Эти добавки способствовали: улучшению рубцового пищеварения и усвоению питательных веществ, повышению молочной продуктивности, и содержания молочного жира, белка в молоке, увеличению коэффициента молочности (таблица 6).

Опытная группа превосходит контрольную группу на: 9,19% по удою, по COMO -0,23%, по жиру -4,11%, по белку -2,48%, по плотности -3,57%, при P < 0,001.

Использование кормовых добавок в рационе опытной группы, а именно Био Токс, Мегабуст Румен, Премикс П60 привело к увеличению удоя, а также улучшению некоторых показателей качества молока, а именно - содержания жира и белка. При этом, СОМО, плотность и кислотность изменились незначительно.

Сравнение удоя, жира и белка за 10 месяцев 2-й лактации (305 дней) реализовано в графиках на рисунках 5, 6 и 7.

Таблица 6 — Физико-химический состав молока, $M \pm m$, n = 20

Цамусторомую поколожена	Показатели по группам			
Наименование показателя	1	2		
Удой, кг	10493±49,1	11457±42,9		
COMO, %	8,87±0,4	8,89±0,4		
Жир, %	3,65±0,1	3,80±0,1		
Белок, %	3,22±0,2	3,30±0,1		
Плотность, °А	28±0,5	29±0,4		
Кислотность, °Т	16,49±0,2	16,53±0,2		

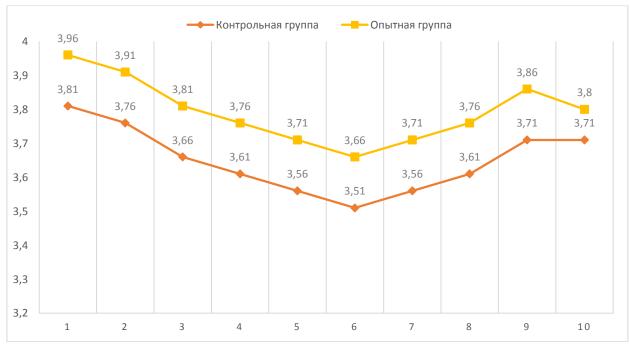


Рисунок 5 – Содержание жира в молоке коров по 2-й лактации

Содержание жира в молоке коров опытной группы в течение периода (10 месяцев) было выше, чем в контрольной группе. В контрольной группе наблюдается снижение содержания жира от начала к середине периода, а затем небольшой подъем. В опытной группе, после первоначального снижения, наблюдается более выраженный подъем к концу периода, что указывает на положительное влияние примененных кормовых добавок в опытной группе.

В начале лактации у коров высокий процент жира в молоке из-за гормональных изменений и мобилизации жировых запасов организма после отёла, что необходимо для обеспечения энергией производства молозива и молока.

Спад содержания жира в середине лактации происходит из-за снижения жировых запасов, стабилизации гормонального фона и увеличения объема производимого молока, что приводит к разбавлению жира в общем объеме. Также может влиять изменение рациона и физиологическое состояние коровы.

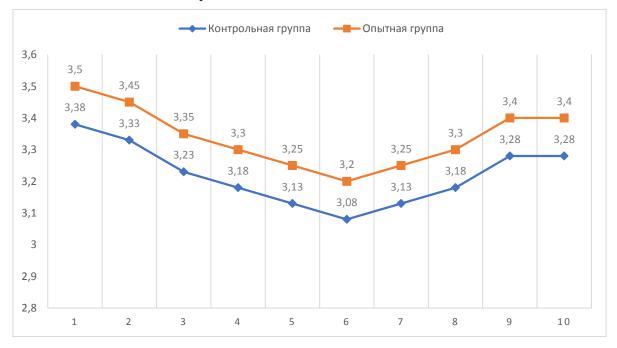


Рисунок 6 – Содержание белка в молоке коров по 2 лактации

Уровень белка в молоке опытной группы постоянно превосходит показатели контрольной группы.

В обеих группах наблюдается спад концентрации белка в первой половине периода (1-6 месяц), затем в опытной группе отмечается восстановление, в то время как в контрольной группе содержание белка остается неизменным. Это свидетельствует о благоприятном эффекте кормовых добавок.

В целом, результаты подчеркивают эффективность воздействия кормовых добавок, а именно Био Токс, Мегабуст Румен, Премикс П60 на опытную группу, в поддержании и повышении содержания белка в молоке. Это может положительно повлиять на качество молока и, следовательно, на экономическую выгоду.

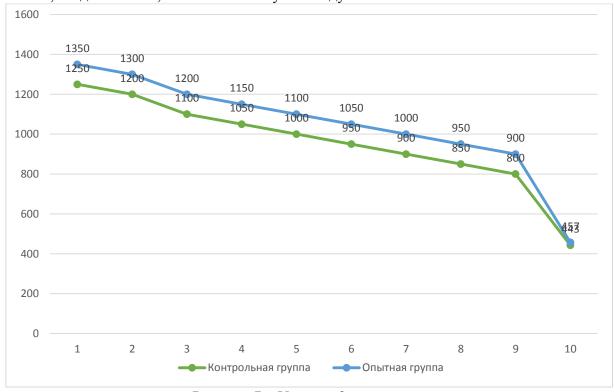


Рисунок 7 – Удой по 2-й лактации

На протяжении всего периода наблюдения, то есть 10 месяцев, удой коров опытной группы был, в целом, выше, чем в контрольной группе. Хотя в обеих группах наблюдается снижение удоя к концу периода, опытная группа демонстрирует более высокие значения. На графике снижение удоя в обеих группах в конце периода, скорее всего, отражает процесс подготовки коров к запуску и сухостойному периоду.

У контрольной и опытной группы органолептические показатели в норме, что свойственно молоку высшего сорта. Цвет белый, запах чистый, без посторонних, не свойственных свежему молоку запахов. Консистенция однородная, без хлопьев (таблица 7).

Таблица 7 – Органолептические показатели молока

Наименование показателя	Показатели по группам		
	1	2	
Цвет	Белый	Белый	
Запах	Чистый	Чистый	
Консистенция	Однородная	Однородная	

Проведение исследований общего состава крови у животных позволяет сделать вывод о их здоровье и выявить наличие воспалительных процессов, инфекций, анемии и других патологических состояний.

Зооветспециалисты активно используют гематологические исследования для оценки общего состояния дойных коров, что влияет на их продуктивность. Гематологические показатели зависят от условий содержания и кормления животных, поэтому при нарушениях функций организма меняются форменные элементы крови и уровень гемоглобина [10]. В наших исследованиях все показатели крови были в пределах нормативов (таблица 8).

Таблица $8 - \Gamma$ ематологические показатели крови голштинского скота, $M \pm m$, n = 20

Наименование показателя	Показатели по группам	
Паименование показателя	1	2
Эритроциты, 1012/л	8,5±0,3	8,8±0,3
Лейкоциты, 109/л	8,3±0,2	8,8±0,2
Гемоглобин, г/л	108±5,0	117±4,2
Общий белок (г %) Δ ±1,0%	7,65±0,05	8,0±0,07
Са (Кальций) (мг/%)	10,3±0,16	11,3±0,17
Резервная щелочность (об. % CO2) $\Delta \pm 3,0\%$	47±0,3	56,4±0,9
Цинк-сульфатная осадочная проба (мл)	1,76±0,04	1,03±0,05

Экономическая эффективность производства молока — это важнейший показатель, определяющий прибыльность и устойчивость молочного хозяйства [9]. Он отражает, насколько эффективно используются все ресурсы, вложенные в производство, для получения максимальной отдачи в виде высококачественного молока (таблица 9).

Таблица 9 – Экономическая эффективность производства молока

тиолици у Экономи к	Группа		
Показатель	контрольная	опытная	
Удой за период опыта, кг	10493	11457	
Содержание жира, %	3,65	3,80	
Удой в переводе на базисную жирность, кг	11264,54	12804,88	
Стоимость валовой продукции от 1 гол., руб.	548583,09	623597,65	
Производственные затраты на гол., руб.	399891,17	454573,24	
Себестоимость 1ц молока, руб.	3550	3550	
Цена реализации 1ц молока базисной жирности, руб.	4870	4870	
Чистый доход, руб.	148691,92	169024,41	
Уровень рентабельности, %	26,8	36,8	

Установлено, что наибольшее количество молока базисной жирности в УОХ «Краснодарское» было получено от коров опытной группы — 11457 кг. В контрольной группе этот показатель составил 10493 кг, это на 964 кг молока меньше. Стоимость валовой продукции неодинакова. В опытной группе этот показатель составил — 623597,65 руб., это на 75014,56 руб. больше, чем в контрольной. Рассчитав чистый доход, мы видим, что в опытной группе этот показатель больше и составляет — 169024,41 руб., что на 20332,49 руб. больше, чем в контрольной группе.

Уровень рентабельности больше в опытной группе и составляет 36,8 %, в контрольной группе – 26,8 %, соответственно выше на 10%. Применение кормовых добавок Био Токс, Мегабуст Румен и Премикса П60 в опытной группе оказало положительное влияние на экономическую эффективность производства молока.

Несмотря на увеличение производственных затрат, значительное увеличение удоя и

улучшение показателей качества молока привело к увеличению стоимости валовой продукции, чистого дохода и уровня рентабельности. Это свидетельствует о том, что использование кормовых добавок является экономически целесообразным в данных условиях. Разница в рентабельности указывает на то, что инвестиции в кормовые добавки окупились благодаря увеличению удоя и качеству молока.

Выводы. В результате проведенных исследований установили, что переваримость корма была выше в опытной группе, конверсия корма у них составила — 1,13 кг, у контрольных — 1,24 кг. Животные опытной группы имели значительно более высокий удой и превосходили аналогов по этому показателю на 10%. Превосходство было установлено и по содержанию молочного жира на 4,11% и белка на 2,48%. Также и наибольшая прибыль была получена от животных опытной группы, и составила 169024,41 руб., у животных контрольной группы показатель прибыли был значительно ниже — 148691,92 руб. Закономерно уровень рентабельности производства молока был больше в опытной группе на 10%.

Использование кормовых добавок является экономически целесообразным в данных условиях. Разница в рентабельности указывает на то, что инвестиции в кормовые добавки окупились благодаря увеличению удоя и качества молока. Для повышения количественных и качественных показателей молока лактирующим голштинским коровам в хозяйстве считаем целесообразным и экономически выгодным рекомендуем вводить в рацион кормовые добавки в количестве: Био Токс — 25 г/гол./сут., Мегабуст Румен — 70 г/гол./сут., Премикс $\Pi60-60$ г/гол./сут.

Список литературы:

- 1. Бойко М.Д. Воспроизводительные качества и молочная продуктивность коров голштинской породы в условиях Московской области / М.Д. Бойко, Г.В. Мкртчян // Тенденции развития науки и образования. 2024. № 106-7. С. 80-82.
- 2. Горлов И.Ф. Влияние генетической принадлежности на молочную продуктивность и качество молока коров голштинской породы / И.Ф. Горлов, М.И. Сложенкина, О.П. Шахбазова, Р.Г. Раджабов, Е.Ю. Анисимова / Аграрный вестник Урала. 2025. Т. 25. № 4. С. 606-618.
- 3. Зеленков П.И. Влияние интенсивного выращивания голштинских телок на эффективность их осеменения / П.И. Зеленков, А.Л. Алексеев, В.А. Каратунов, П.С. Кобыляцкий / В сборнике: Инновации в науке, образовании и бизнесе основа эффективного развития АПК. Материалы международной научно-практической конференции, посвященной 135-летию со дня рождения классика русской зоотехнической науки, организатора и руководителя высшего зоотехнического образования профессора Малигонова А.А.: В 4-х томах. 2011. С. 79-81.
- 4. Каратунов, В.А. Биохимические показатели крови голштинских коров австралийской селекции, выращенных по интенсивной технологии / В.А. Каратунов, А.С. Чернышков, П.С. Кобыляцкий // Вестник Донского государственного аграрного университета. − 2019. − № 4-1(34). − С. 62-68.
- 5. Каратунов В.А. Влияние интенсивной технологии выращивания голштинских телок на их поведенческие реакции / В.А. Каратунов, П.С. Кобыляцкий, А.С. Чернышков / Вестник Донского государственного аграрного университета. 2019. № 3-1 (33). С. 25-29.
- 6. Кобыляцкий, П.С. К вопросу подбора быков-производителей для улучшения дойного стада красной степной породы / П.С. Кобыляцкий, В.А. Каратунов, Т.И. Тупольских // Вестник Донского государственного аграрного университета. 2023. № 4 (50). С. 92-100.
- 7. Костомахин Н.М. Молочная продуктивность и воспроизводительная способность коров разной кровности по голштинской породе / Н.М. Костомахин, О.А. Воронкова, М.А. Габедава // Вестник Курганской ГСХА. 2021. № 3 (39). С. 43-50.
- 8. Капитонова Е.А. Реализация молочной продуктивности коровами голштинской породы разной селекции при круглогодовом однотипном кормлении / Е.А. Капитонова, М.Х. Хаткова, З.А. Кубатиева // Вестник Ульяновской государственной сельскохозяйственной

- академии. 2025. № 1 (69). С. 124-129.
- 9. Цыб А.М. Связь между показателями молочной продуктивности у коров голштинской породы в условиях ООО «Русмолоко» / А.М. Цыб, Г.В. Мкртчян // The Scientific Heritage. 2022. № 94 (94). С. 4-9.
- 10. Lyashuk A.R. Dairy productivity and efficiency of milk production of black-and-white cows of different thorough-bredness on the Holstein breed // Bulletin of Agrarian Science. 2020. № 4 (85). C. 168-175.

References

- 1. Boyko M.D. Reproductive qualities and milk yield of Holstein cows in the conditions of the Moscow region / M.D. Boyko, G.V. Mkrtchyan // Trends in the development of science and education. 2024. No. 106-7. pp. 80-82.
- 2. Gorlov I.F. Influence of genetic affiliation on milk yield and milk quality of Holstein cows / I.F. Gorlov, M.I. Skladenkina, O.P. Shakhbazova, R.G. Radzhabov, E.Yu. Anisimova / Agrarian Bulletin of the Urals. 2025. Vol. 25. No. 4. pp. 606-618.
- 3. Zelenkov P.I. The influence of intensive cultivation of Holstein heifers on the effectiveness of their insemination / P.I. Zelenkov, A.L. Alekseev, V.A. Karatunov, P.S. Kobylyatsky / In the collection: Innovations in science, education and business the basis for the effective development of agriculture. Materials of the international scientific and practical conference dedicated to the 135th anniversary of the birth of the classic of Russian zootechnical science, organizer and head of higher zootechnical education, Professor A.A. Malygonova: In 4 volumes. 2011. pp. 79-81.
- 4. Karatunov, V.A. Biochemical blood parameters of Holstein cows of Australian breeding, grown using intensive technology / V. A. Karatunov, A. S. Chernyshkov, P. S. Kobylyatsky // Bulletin of the Don State Agrarian University. − 2019. − № 4-1(34). − Pp. 62-68.
- 5. Karatunov V.A., Kobylyatsky P.S., Chernyshkov A.S. The influence of intensive technology of growing Holstein heifers on their behavioral reactions / Bulletin of the Don State Agrarian University. 2019. № 3-1 (33). Pp. 25-29.
- 6. Kobylyatsky, P.S. On the issue of selecting breeding bulls to improve the milking herd of the red steppe breed / P.S. Kobylyatsky, V.A. Karatunov, T.I. Tupolskikh // Bulletin of the Don State Agrarian University. 2023. N 4 (50). Pp. 92-100.
- 7. Kostomakhin N.M. Dairy productivity and reproductive ability of cows of different bloodlines according to the Holstein breed / N.M. Kostomakhin, O.A. Voronkova, M.A. Gabedava // Bulletin of the Kurgan State Agricultural Academy. $2021. N_2 3 (39). Pp. 43-50.$
- 8. Kapitonova E.A. Realization of dairy productivity by Holstein cows of different breeding with year-round feeding of the same type / E.A. Kapitonova, M.H. Khatkova, Z.A. Kubatieva // Bulletin of the Ulyanovsk State Agricultural Academy. 2025. № 1 (69). Pp. 124-129.
- 9. Tsyb A.M. The relationship between milk productivity indicators in Holstein cows in the conditions of Rusmoloko LLC / A.M. Tsyb, G.V. Mkrtchyan // The Scientific Heritage. 2022- No. 94 (94). pp. 4-9.
- 10. Bakharev, A.A. Evaluation of bulls-producers of the holstein breed in the conditions of a large dairy complex / A.A. Bakharev, O.M. Sheveleva, V.O. Tsyganok, A.M. Bekshenova, A.G. Koshchaev, E.A. Gyrnets // Proceedings of the Kuban State Agrarian University. 2022 №100.

Сведения об авторах:

Каратунов Вячеслав Анатольевич, доктор с.-х. наук, доцент кафедры физиологии и кормления с.-х. животных ФГБОУ ВО Кубанский ГАУ им. И.Т. Трубилина, E-mail: karatunov1982@yandex.ru;

Кобыляцкий Павел Сергеевич, кандидат с.-х. наук, доцент кафедры пищевых технологий ФГБОУ ВО ДГАУ, E-mail: kpspersia@mail.ru;

Кирпенко Алина Михайловна, магистр 1 курса, направления 36.04.02 Зоотехния, ФГБОУ ВО Кубанский ГАУ им. И.Т. Трубилина, E-mail: kirpenko34@gmail.com.

Information about the authors:

Karatunov Vyacheslav Anatolyevich, Doctor of Agricultural Sciences, Associate Professor of the Department of Physiology and Feeding of Agricultural Animals, I.T. Trubilin Kuban State Agrarian University, E-mail: karatunov1982@yandex.ru;

Kobylyatsky Pavel Sergeevich, Candidate of Agricultural Sciences, Associate Professor of the Department of Food Technologies, FSBEI of Higher Education «Don State Agrarian University», E-mail: kpspersia@mail.ru;

Kirpenko Alina Mihailovna, 1st year master's student in Animal Husbandry, Kuban State University named after I.T. Trubilin, E-mail: kirpenko34@gmail.com.

УДК 636.03

ВЛИЯНИЕ ФЕРМЕНТНЫХ ДОБАВОК НА КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ ЯИЦ И МЯСНУЮ ПРОДУКТИВНОСТЬ ПЕРЕПЕЛОВ

Дегтярь А.С., Нурашев Э.Р., Левандовская А.В.

Аннотация: Целью работы является изучение эффективности использования ферментных кормовых добавок Фекорд 2004-С и Фитазим-С ООО «БелАгроФермент» в рационах перепелов. В состав Фекорд 2004-С входят ксиланаза, β-глюканаза, глюкоамилаза, а в состав Φ итазим-C – фитаза. Масса белка в 1 опытной группе, где применялся ферментный препарат Фекорд 2004-С была выше, чем в контроле на 2,09 г или 35,9%, а во 2 опытной группе, где использовали препарат Φ итазим-C на 0.92 г или 15.8%соответственно. По массе желтка преимущество имели несушки из 1 опытной группы, где она составила 5,3,6 г. В контрольной группе масса желтка была меньше по сравнению с 1 опытной на 0,98 г или 22,4%. Масса желтка во 2 опытной группе составила 4,77 г, что на 0,39 г или 8,9% больше, чем в контроле. Использование ферментных препаратов оказало влияние и на массу скорлупы. Наименьшей она оказалась в 1 опытной группе – 1,05 г. Во 2 опытной и контрольной масса скорлупы составила 1,64 и 1,57 г. По результатам контрольного убоя установлено, что при введении в состав комбикорма ферментных добавок Фекорд 2004-С и Фитазим-С в количестве 100 грамм на тонну петушки имели убойные качества лучше, чем их аналоги из контрольной группы. По предубойной живой массе петушки 1 опытной группы превосходили контроль на 20г или 11,6%. Петушки 2 опытной группы превышали данный показатель у контроля на 13 г или 7,5%.

Ключевые слова: перепела, ферментный препарат, мясная продуктивность, яичная продуктивность.

THE EFFECT OF ENZYME ADDITIVES ON EGG QUALITY AND MEAT PRODUCTIVITY IN QUAIL

Degtyar A.S., Nurashev E.R., Levandovskaya A.V.

Abstract: The aim of this study is to evaluate the effectiveness of using the enzyme feed additives Fekord 2004-S and Fitazim-S (BelAgroFerment LLC) in quail diets. Fekord 2004-S contains xylanase, β-glucanase, and glucoamylase, while Fitazim-S contains phytase. The protein mass in the 1st experimental group, where the enzyme preparation Fekord 2004-S was used, was higher than in the control by 2.09 g or 35.9%, and in the 2nd experimental group, where the preparation Fitazim-S was used, by 0.92 g or 15.8%, respectively. In terms of yolk mass, layers from the 1st experimental group had an advantage, where it was 5.3.6 g. In the control group, the yolk mass was less than in the 1st experimental group by 0.98 g or 22.4%. The yolk mass in the 2nd experimental

group was 4.77 g, which is 0.39 g or 8.9% more than in the control. The use of enzyme preparations also affected the shell mass. The lowest eggshell weight was found in the first experimental group – 1.05 g. In the second experimental and control groups, eggshell weights were 1.64 and 1.57 g, respectively. Results of the control slaughter showed that when the enzyme supplements Fekord 2004-S and Fitazim-S were added to the feed at a rate of 100 grams per ton, the cockerels had better slaughter qualities than their counterparts in the control group. In terms of pre-slaughter live weight, the cockerels in the first experimental group exceeded the control group by 20 g, or 11.6%. Cockerels in the second experimental group exceeded the control group by 13 g, or 7.5%.

Keywords: quails, enzyme supplement, meat production, egg production.

Введение. Для получения продукции перепеловодства на промышленной основе наиболее важным фактором является обеспечение ее полноценным кормлением. На мелких и крупных фермах по выращиванию перепелов, как правило, используются готовые полнорационные комбикорма. В их составе около 45% составляет зерно кукурузы, которое в настоящее время является довольно дорогостоящим элементом. Вследствие этого она часто заменяется более распространенными и дешевыми - пшеницей, ячменем, овсом и др. Но эти корма снижают усвоение питательных веществ и переваримость из-за высокого содержания в них некрахмалистых полисахаридов. Для улучшения переваримости и увеличения доступности питательных компонентов следует вводить в комбикорма ферментные препараты. Применение ферментных препаратов в комбикормах для птицы также позволяет увеличить доступность фосфора, кальция, магния, цинка, способствуют увеличению уровня усвояемости аминокислот; увеличению мясности тушек бройлеров и концентрации белка в мясе, увеличению живой массы бройлеров, улучшению конверсии корма, снижению затрат корма на единицу продукции [1, 4].

Актуальность исследований. В настоящее время отечественной промышленностью представлен широкий спектр ферментных препаратов и уже получены научные и практические данные об их влиянии на продуктивность птицы. Но в основном исследования проводились при выращивании цыплят-бройлеров. Поэтому особую актуальность имеет изучение эффективности использования ферментных препаратов при выращивании перепелов [3].

Цель и задачи исследований. Целью работы является изучение эффективности использования ферментных кормовых добавок Фекорд 2004-С и Фитазим-С ООО «БелАгроФермент» в рационах перепелов. В состав Фекорд 2004-С входят ксиланаза, β-глюканаза, глюкоамилаза, а в состав Фитазим-С – фитаза.

Материал и методика исследований. Для проведения исследований были сформированы 3 группы суточных перепелов маньчжурской породы, по 100 голов в каждой (табл. 1). Вся исследуемая птица находилась в идентичных экспериментальных условиях, при этом показатели температуры окружающей среды, интенсивности освещения, уровня влажности воздуха, доступности кормовых ресурсов и питьевой воды в течение всего периода эксперимента полностью соответствовали установленным стандартам Российской академии сельскохозяйственных наук (РАСХН).

Таблица 1 - Схема опыта

Группы	Схема кормления	
Контрольная	Основной рацион	
1-я опытная	(ОР + Фекорд 2004-С) 100 г/тонну комбикорма	
2-я опытная	(ОР + Фитазим-С) г/тонну комбикорма	

Питательность рационов соответствовала возрасту. Молодняку до 3-недельного возраста скармливали стартерный комбикорм. В следующий возрастной период (3-5 недель) – ростовой комбикорм. С 5 недель до конца выращивания использовали финишный комбикорм.

Контрольная группа перепелов получала комбикорм без ферментного препарата, птице из первой опытной группы в состав рациона ежесуточно вводили Фекорд 2004-С в количестве 100 грамм на тонну комбикорма в кормоцехе, второй группе Фитазим-С –из расчета 100 грамм на тонну комбикорма.

Разделение птицы по полу проводили в 42-дневном возрасте. Для изучения мясной продуктивности брали по 5 голов перепелов петушков в возрасте 190 дней. Контрольный убой проводили по методике ВНИТИП.

В яичном производстве основным показателем, влияющим на товарную ценность яйца является масса яйца (табл. 2). Для изучения качественных показателей яиц мы взяли по 5 штук от несушек. На качество яйца оказывает влияние множество факторов, как внешних, так и внутренних. Одним из наиболее важных является полноценность питания несушек.

Таблица 2 - Морфологические показатели качества яйца

Показатели	Группы		
	Контрольная	1 опытная	2 опытная
Масса яйца, г	11,77±0,09	14,32±0,11**	13,15±0,07*
Масса белка, г	5,82±0,10	7,91±0,09**	6,74±0,08*
Масса желтка, г	$4,38\pm0,01$	5,36±0,14**	4,77±0,17*
Масса скорлупы, г	1,57±0,01	1,05±0,11	1,64±0,13
Отношение массы белка к	1,33±0,01	1,48±0,03	1,41±0,05
массе желтка			
Индекс формы, %	81,9±0,27	79,8±0,35	79,1±0,15
Толщина скорлупы, мм	$0,22\pm0,02$	0,20±0,01	0,21±0,01
Плотность яйца, г/см 3	$1,050\pm0,03$	1,050±0,01	1,055±0,02
Индекс белка, %	11,6±0,01	13,3±0,12	10,67±0,14
Индекс желтка, %	43,8±0,21	44,75±0,31	40,0±0,51
Каротиноиды, мкг/г	12,55±0,22	14,37±0,21**	13,2±0,12*

Примечание: *** - Р>0,999, ** - Р>0,99, * - Р>0,95

По результатам исследований установлено, что масса яйца несушек опытных групп с применением ферментных препаратов была несколько выше, чем в контрольной группе на 2,55 и 1,17 г, что выше на 21,7 и 8,9% соответственно.

При этом масса белка в 1 опытной группе, где применялся ферментный препарат Фекорд 2004-С была выше, чем в контроле на 2,09 г или 35,9%, а во 2 опытной группе, где использовали препарат Фитазим-С на 0,92 г или 15,8% соответственно.

По массе желтка преимущество имели несушки из 1 опытной группы, где она составила 5,3,6 г. В контрольной группе масса желтка была меньше по сравнению с 1 опытной на 0,98 г или 22,4%. Масса желтка во 2 опытной группе составила 4,77 г, что на 0,39 г или 8,9% больше, чем в контроле. Использование ферментных препаратов оказало влияние и на массу скорлупы. Наименьшей она оказалась в 1 опытной группе – 1,05 г. Во 2 опытной и контрольной масса скорлупы составила 1,64 и 1,57 г.

Самая тонкая скорлупа была в 1 опытной группе 0,20 мм, а самая толстая в контроле -0,22 мм.

В наших исследованиях, величина плотности яйца во всех подопытных группах была примерно одинаковой — $(1,050\text{-}1,055\ \text{г/cm}^3)$.

Существенное значение для качества яйца имеет и такой показатель, как содержание в нèм каратиноидов. Они оказываю огромную роль в метаболических процессах эмбрионального развития птицы. В контрольной группе их количество составило 12,55 мкг/г. У аналогов опытных групп количество каратиноидов выше по сравнению с контролем на 1,82 и 0,65 мкг/г или 14,5 и 5,2%.

Таким образом, использование ферментных добавок Фекорд 2004-С и Фитазим-С в

количестве 100 грамм на тонну комбикорма перепелок-несушек не оказывает отрицательного влияния на морфологические показатели качества яйца.

Белки являются основным строительным материалом организма. Мясо птицы богато белком высокого качества, содержащего все незаменимые аминокислоты, необходимые человеку. Именно благодаря этому оно высоко ценится диетологами и специалистами по здоровому питанию. Помимо белка, мясо птицы также является источником полезных жиров, включая полиненасыщенные жирные кислоты (например, омега-3). Эти жиры способствуют снижению уровня холестерина в крови и помогают поддерживать здоровье сердечно-сосудистой системы. Кроме того, мясо птицы богато витаминами группы В, такими как витамин В12, фолиевая кислота и ниацин, а также минералами, такими как железо, цинк и фосфор. Все эти вещества играют важную роль в поддержании здоровья организма. Чтобы повысить питательную ценность мяса птицы, производители часто используют специальные кормовые добавки. Например, введение в рацион птиц определенных минералов и витаминов позволяет увеличить содержание полезных веществ в мясе. Однако важно учитывать баланс питательных веществ, поскольку избыток некоторых элементов может негативно сказываться на качестве продукта. Условия выращивания птицы также влияют на качество мяса. Чистота воздуха, температура, влажность и освещение имеют значение. Так, например, стресс, вызванный плохими условиями содержания, может привести к ухудшению вкусовых качеств мяса и снижению его пищевой ценности [2, 5].

В связи с этим, с целью определения действия ферментных добавок на убойные показатели перепелов был проведен контрольный убой по 5 голов петушков из каждой группы.

По результатам контрольного убоя установлено, что при введении в состав комбикорма ферментных добавок Фекорд 2004-С и Фитазим-С в количестве 100 грамм на тонну петушки имели убойные качества лучше, чем их аналоги из контрольной группы (рис.). По предубойной живой массе петушки 1 опытной группы превосходили контроль на 20г или 11,6%. Петушки 2 опытной группы превышали данный показатель у контроля на 13 г или 7,5%.

По массе непотрошеной тушки у исследуемых групп наблюдалась аналогичная картина. Так перепела петушки 1 опытной группы имели непотрошеную тушку тяжелее на 22,3 г или 14,5%, чем контрольная группа. А петушки 2 опытной группы превосходили сверстников из контрольной на 15,8 г или 10,3%.

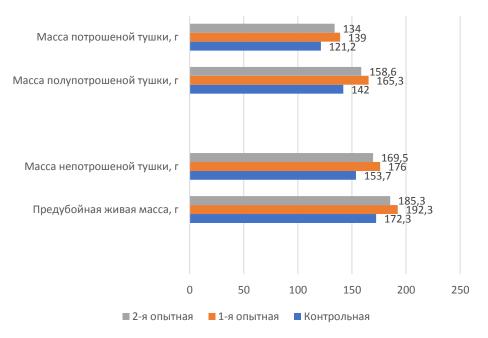


Рисунок – Убойные показатели перепелов петушков, г

Масса потрошеной тушки является одним из ключевых показателей мясной продуктивности птицы. Она отражает количество съедобного мяса, которое остается после удаления внутренних органов, головы, ног и перьев. Чем больше масса потрошеной тушки, тем выше выход конечного продукта и, соответственно, экономическая эффективность производства. Сбалансированный рацион обеспечивает птицу необходимыми белками, витаминами и минералами, способствуя росту мышц и уменьшению жировых отложений.

Так, масса потрошеной тушки у перепелов петушков в группах с применением ферментных препаратов Фекорд 2004-С и Фитазим-С была выше, чем в контроле на 17,8 г или 14,7%; 12,9 г или 10,6% соответственно (табл. 3).

Таблица 3 – Масса внутренних органов перепелов петушков, г

Показатели	Группы		
	Контрольная	1-я опытная	2-я опытная
желудка	3,52±0,11	4,22±0,10	3,57±0,11
Печени	3,38±0,09	4,39±0,14	3,55±0,12
сердца	1,51±0,03	1,70±0,05	1,70±0,01
кишечника	10,0±0,41	12,0±0,47	11,0±0,37
семенников	3,99±0,15	4,55±0,11	2,82±0,19

Ферментные препараты оказывают значительное влияние на рост и развитие птицы, включая изменения массы внутренних органов. Ферменты помогают птице переваривать кормовые компоненты, улучшая усвоение питательных веществ. Это особенно важно для молодняка, поскольку их пищеварительная система еще недостаточно развита. Применение ферментов позволяет повысить эффективность кормления, снизить затраты на корма и уменьшить количество отходов.

Использование ферментных препаратов способствует улучшению функций желудочнокишечного тракта, печени и поджелудочной железы. Ферменты способствуют повышению активности пищеварительных желез, что ведет к увеличению массы указанных органов. Например, поджелудочная железа увеличивается в размерах, вырабатывая больше ферментов для расщепления белков, жиров и углеводов. Улучшается усвоение питательных веществ, что положительно сказывается на росте и развитии птицы.

Так, использование ферментных препаратов Фекорд 2004-С и Фитазим-С оказало положительное влияние на рост и развитие внутренних органов перепелов петушков. По массе желудка, печени, сердца и кишечника 1 опытная группа имела преимущество перед контрольными сверстниками на 19,9; 29,9; 12,6 и 20% соответственно. Опытная группа 2 превосходили группу без использования ферментных препаратов по массе желудка, печени, сердца и кишечника на 1,4; 5,0; 12,6 и 10% соответственно.

Таким образом, наибольшее преимущество по убойным показателям и массе внутренних органов имели петушки из первой опытной группы, получавшие в составе комбикорма ферментную добавку Фекорд 2004-С в количестве 100 грамм на тонну комбикорма.

Список литературы

- 1. Молоканова, О.В. Современные разработки кормовых добавок на основе протеаз: стратегия по замене антибиотиков стимуляторов роста /Молоканова О.В., Дорофеева С.Г. Текст: непосредственный //Птицеводство. 13-17. 2024. №4.
- 2. Семенченко, С.В. Влияние препарата Проферм-БК на яичную продуктивность курнесушек /Семенченко С.В., Засемчук И.В., Максимов Н.А. //Вестник Мичуринского государственного аграрного университета. 2024. № 1 (76). С. 119-123.
- 3. Семенченко, С.В. Оценка качества белково-минеральной добавки из ног цыплятбройлеров/ Семенченко, С.В. //В сборнике: Современное животноводство, инновации в производстве продуктов питания, гигиеническая и производственная безопасность. Материалы международной научно-практической конференции. В 2-х частях.

Персиановский, 2023. С. 109-112.

- 4. Семенченко, С.В. Убойные качества мяса цыплят бройлеров, выращенных в разных условиях содержания /Семенченко С.В., Нефедова В.Н. //В сборнике: Аграрная наука и производство в условиях становления цифровой экономики Российской Федерации. материалы международной научно-практической конференции. В 2 т.. Персиановский, 2024. С. 99-103
- 5. Фисинин, В.И. Динамика и перспективы развития мирового и отечественного птицеводства. результаты работы яичного и мясного птицеводства России в 2024 году /Фисинин В.И. Текст: непосредственный//Птицеводство. − 2025. №3. 4-10.

References

- 1. Molokanova, O.V. Modern development of protease-based feed additives: a strategy for replacing antibiotics growth stimulants/Molokanova O.V., Dorofeeva S.G. Text: direct//Poultry farming. pp.13-17. 2024. N24.
- 2. Semenchenko, S.V. Influence of Proferm-BC on egg production of laying hens/S.V. Semenchenko, I.V. Zasemchuk, N.A. Maksimov//Bulletin of Michurinsky State Agrarian University. 2024. № 1 (76). pp. 119-123.
- 3. Semenchenko, S.V. Assessment of the quality of the protein-mineral additive from the legs of broiler chickens/Semenchenko, S.V.//In the collection: Modern animal husbandry, innovations in food production, hygienic and industrial safety. Proceedings of the International Scientific and Practical Conference. In 2 parts. Persianovsky, 2023. pp. 109-112.
- 4. Semenchenko, S.V. Slaughter qualities of broiler chicken meat grown in different conditions/Semenchenko S.V., Nefedova V.N.//In the collection: Agrarian science and production in the context of the formation of the digital economy of the Russian Federation. materials of the international scientific-practical conference. In 2 parts. Persianovsky, 2024. pp. 99-103
- 5. Fisinin, V.I. Dynamics and development prospects of world and domestic poultry farming. Results of the work of egg and meat poultry farming in Russia in 2024/Fisinin V.I. Text: direct//Poultry farming. -2025. N03. pp. 4-10.

Информация об авторах

Дегтярь Анна Сергеевна — кандидат сельскохозяйственных наук, доцент кафедры разведения сельскохозяйственных животных, частной зоотехнии и зоогигиены им. П.Е. Ладана Федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный аграрный университет», e-mail: annet c@mail.ru;

Левандовская Анна Владимировна - студент, Федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный аграрный университет»;

Нурашев Эмиль Ринатович - студент, Федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный аграрный университет».

Information about the authors

Degtyar Anna Sergeevna – Candidate of Sciences in Agriculture, Associate Professor of the Department of Livestock Breeding, Private Zootechnics and Zoo Hygiene named after P.E. Ladan Federal State Budgetary Educational Institution of Higher Education Don State Agrarian University, e-mail: annet_c@mail.ru;

Levandovskaya Anna Vladimirovna - student, Federal State Budgetary Educational Institution of Higher Education Don State Agrarian University;

Nurashev Emil Rinatovich - student, Federal State Budgetary Educational Institution of Higher Education Don State Agrarian University.

ПРОДУКТИВНЫЕ КАЧЕСТВА КРОЛИКОВ ПРИ ИСПОЛЬЗОВАНИИ ПРОБИОТИЧЕСКОЙ ДОБАВКИ «ОЛИН»

Семенченко С.В., Алексанян А.Г.

Аннотация. В статье рассматриваются вопросы использования пробиотической кормовой добавки «Олин» разной концентрации в комбикормах для кроликов. Целью работы являлся анализ продуктивных качества кроликов породы Советская шиншила при использовании комбикормах пробиотической добавки «Олин» крестьянско=фермерского хозяйства «Галдин С.Н.» Красносулинского района Ростовской области. Установлено, пробиотическая добавка «Олин в разной дозировке: - 50, 75 и 35 мг/кг живой массы оказывала положительное влияние на динамику живой массы, среднесуточные приросты, сохранность и мясную продуктивность кроликов. По окончании выращивания живая масса опытных групп превосходила контроль на 12,76; 17,08 и 17,32%, среднесуточные приросты увеличились на 21,12; 27,69 и 28,04%, сохранность на 4,8-6,7%, убойная масса на 11,22; 14,31 и 15,48%, убойный выход на 0,85; 1,76 и 2,21%, масса парной тушки на 13,05; 16,16 и 17,42%, индекс мясности в опытных группах превышает контрольную на 0,77; 1,11 и 1,46. В 1,2 и 3 опытных группах показатели развития внутренних органов были выше по сравнению с контрольной — легкие с трахеей на -6.38; $16,97;\ 25,41\%,\ cepд$ це на $-2,06;\ 11,31;\ 17,52\%,\ neчень на <math>-6,82;\ 12,02;\ 17,12\%,\ noчки на <math>-$ 3,79; 1,09; 5,55%, желудок без содержимого на -5,0; 17,97 и 21,37%. Однако наибольшее влияние на рост развитие и мясную продуктивность кроликов оказала концентрация кормовой добавки 35 мг/кг живой массы, которая по сравнению с концентрациями 50 и 75 мг/кг живой массы повысила вышеуказанные показатели соответственно на 5,22%, 28,04%, 4,8%, 2,21% u 2,57%.

Ключевые слова: кролики, порода, живая масса, прирост, сохранность, масса туши, убойный выход, внутренние органы.

PRODUCTIVE QUALITIES OF RABBITS WHEN USED PROBIOTIC SUPPLEMENT "OLIN"

Semenchenko S.V., Aleksanyan A.G.

Annotation. The article discusses the use of probiotic feed additives "Olin" of different concentrations in compound feeds for rabbits. The purpose of the work was to analyze the productive qualities of Soviet Chinchilla rabbits when using the probiotic additive "Olin" in compound feeds in the conditions of the Galdin S.N. peasant farm in the Krasnosulinsky district of the Rostov region. It has been established that the probiotic supplement "Olin in different dosages:-50, 75 and 35 mg/kg of live weight had a positive effect on the dynamics of live weight, average daily gains, safety and meat productivity of rabbits. At the end of rearing, the live weight of the experimental groups exceeded the control by 12.76; 17.08 and 17.32%, average daily gains increased by 21.12; 27.69 and 28.04%, safety by 4.8-6.7%, slaughter weight by 11.22; 14.31 and 15.48%, slaughter yield by 0.85; 1.76 and 2.21%, weight fresh carcasses by 13.05, 16.16 and 17.42%, the meat index in the experimental groups exceeds the control by 0.77; 1,11 and 1,46. In the 1,2 and 3 experimental groups, the indicators of the development of internal organs were higher than in the control group - lungs with trachea by 6.38; 16.97; 25.41%, heart by 2.06; 11.31; 17.52%, liver by 6.82; 12.02; 17.12%, kidneys by 3.79; 1.09; 5.55%, stomach without contents at 5.0; 17.97 and 21.37%. However, the greatest impact on the growth, development and meat productivity of rabbits was exerted by the concentration of a feed additive of 35 mg/kg live weight, which, compared with concentrations of 50 and 75 mg/kg live weight, increased the above

indicators, respectively, by 5,22%, 28,04%, 4,8%, 2,21% and 2.57%.

Keywords: rabbits, breed, live weight, gain, preservation, body weight, slaughter yield, internal organs.

Введение. В условиях импортозамещения Российская Федерация почти полностью обеспечивает себя мясом сельскохозяйственных животных и птицы. Но при этом объемы производства крольчатины оставляют желать лучшего.

Одним из путей повышения объемов крольчатины является интенсификация производства, с внедрением современных технологий полноценного нормированного кормления кроликов, с применением новых пробиотических препаратов, что позволит повысить интенсивность роста животных, продуктивность и снизить затраты корма на 1 кг прироста.

Пробиотики способствуют улучшению пищеварения, влияют на повышение защитных функций организма, снижению кишечных инфекций, а также активизируют генетический потенциал кроликов. Поэтому, использование полнорационных кормов в сочетании с биодобавками может стимулировать защитные функции организма, увеличивающие сохранность и физиологический статус животных.

В связи с этим, важным моментом считается дилемма биодобавок для использования в рационах, которые могли бы привести к повышению усвояемости и поедаемости комбикорма, сохранности поголовья и получения мяса, характеризующегося качественными и безопасными показателями.

«Олин» – один из таких пробиотических препаратов – это однородный мелкодисперсный светло-кремового пвета. содержаший культуры Bacillus licheniformis в концентрации 2x10⁹ КОЕ/г высокоустойчивый к температурам и сокам желудочно-кишечного тракта. А при налаживании в хозяйствах интенсивной технологии ведения отрасли кролиководства c использованием полноценного нормированного кормления приведет к увеличению мясной продуктивности кроликов и потребитель получит продукт.

Исходя из выше сказанного, использование пробиотиков в комбикормах, является важным технологическим процессом, способствующим проанализировать их влияние на продуктивность животных, ассимиляцию питательных веществ комбикормов, физиологический статус организма к воздействию факторов окружающей среды, а также качества продукции [1-10].

Цель работы – проанализировать продуктивные качества кроликов породы Советская шиншила при использовании в комбикормах пробиотической добавки «Олин» в условиях крестьянско=фермерского хозяйства «Галдин С.Н.» Красносулинского района Ростовской области.

В задачи работы входило – оценить динамику живой массы, рост, развитие, сохранность и мясную продуктивность кроликов.

Материал и методы исследований. Исследования проводились в КФХ «Галдин С.Н.» Красносулинского района Ростовской области на кроликах породы Советская шиншила.

Для исследований сформировано 4 группы кроликов-самцов в возрасте 45 суток по 15 голов в каждой, которых выращивали до 120-ти дневного возраста, разделенных по принципу аналогов. Условия содержания у всех групп были одинаковые.

Контрольная группа получала основной рацион – комбикорм ПЗК-92, имеющий в своем составе жмых подсолнечный, пшеничные отруби, шроты масличных культур, травяную муку из лющерны. Опытные группы к основному рациону получали пробиотическую добавку «Олин в разной дозировке: 1 опытная – 50 мг/кг, 2 опытная – 75 мг/кг и 3 опытная – 35 мг/кг живой массы.

В процессе исследований изучали динамику живой массы, путем индивидуального взвешивания каждые 15 суток, сохранность поголовья, среднесуточный прирост и мясную продуктивность - путем контрольного убоя по три головы из каждой группы.

Результаты исследований и их обсуждение. Интенсивность роста молодняка при использовании разных доз пробиотического препарата «Олин» представлена на рис. 1.

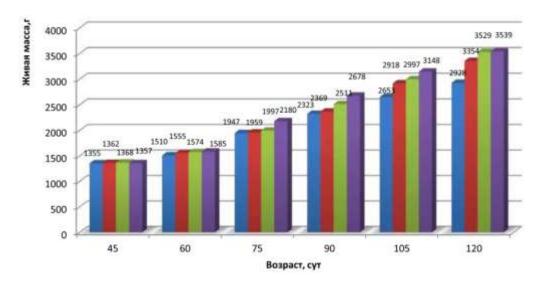


Рисунок 1— Динамика живой массы исследуемых групп кроликов, г где: - контрольная группа, - 1 опытная группа, - 2 опытная группа, - 3 опытная группа.

Отмечено, что в возрасте от 45 до 60-ти дневного возраста динамика живой массы в исследуемых группа отличалась незначительно.

В возрасте 75-105 дневного возраста наблюдается стабильная линия повышения живой массы у всех опытных групп в сравнении с контрольной и с явным преимуществом 3 опытной группы соответственно в 75 суток на - 0,61; 2,50 и 10,68%, в 90 суток на - 1,94; 7,48 и 13,25%, в 105 суток на - 9,08; 21,48 и 25,25%.

В возрасте 120 дней наблюдается значительное преимущество опытных групп над контрольной на 12,76; 17,08 и 17,32%. При этом отмечено, что 2 и 3 опытные группы значительно превосходят 1 опытную группу на 4,95 и 5,22% соответственно. По нашему мнению, это связано с тем, что повысилась скорость роста кроликов из-за нарастания трансформации питательных веществ комбикорма, дозировка которых, отличается способностью к выработке метаболических веществ и ферментов многообразной специфичности.

Одним из самых заметных параметров, относящийся к росту и развитию животных, является среднесуточный прирост кроликов (рис. 2).

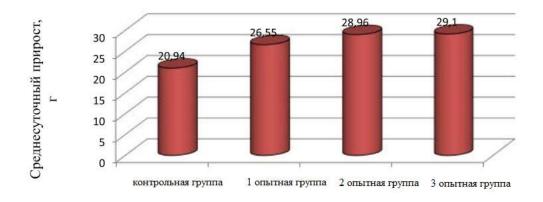


Рисунок 2 – Среднесуточный прирост подопытного поголовья, г

Установлено, что за время проведения исследований, 1,2 и 3 опытные группы превосходили контрольную, на 21,12; 27,69 и 28,04%. При этом самые высокие приросты кроликов наблюдаются в 3 опытной группе. Разница с 1 и 2 опытными составила – 8,76 и 0,48%.

Пробиотик «Олин» в составе комбикорма повлиял и на сохранность поголовья (рис. 3).

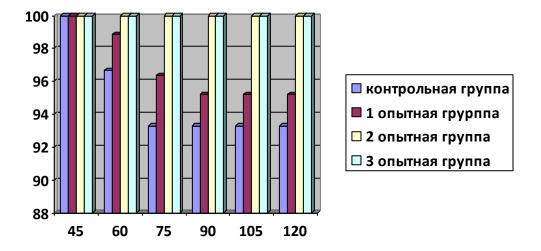


Рисунок 3 – Сохранность кроликов, %

Анализ данных показал, что 2 и 3 опытные группы имели 100%-ную сохранность. 1 опытная группа имела сохранность поголовья на уровне 95,2%, что меньше по сравнению со 2 и 3 опытными группами на 4,8%. В контрольной группе к концу выращивания сохранность составила 93,3%, что на 6,7% меньше в сравнении со 2 и 3 опытными группами.

Это можно мотивировать тем, что у кроликов контрольной группы еще не до конца сформировалась микрофлора кишечника после перехода на основной рацион.

Контрольный убой кроликов, по три головы из каждой группы, показал следующие результаты мясной продуктивности (рис. 4).

Рисунок 4 – Мясная продуктивность кроликов, г

Установлено, что средняя предубойная масса 1,2 и 3 опытных групп превосходила массу кроликов контрольной группы на 11,35; 13,14 и 13,83%, что и отразилось на убойной массе с превосходством опытных групп соответственно на 11,22; 14,31 и 15,48%. При этом убойная масса 3 опытной группы превосходит 1 и 2 опытные на 4,8 и 1,50%.

Аналогичная тенденция наблюдается и по выходу массы парной тушки кроликов с разницей в 13,05; 16,16 и 17,42% соответственно. При этом масса парной туши 3 опытной группы аналогично выше массы 1 и 2 опытных групп на 5,02 и 1,49%.

По выходу жира-сырца в контрольной и опытных группа значительной разницы не наблюдается.

Убойный выход и выход тушек кроликов представлен на рис. 5.

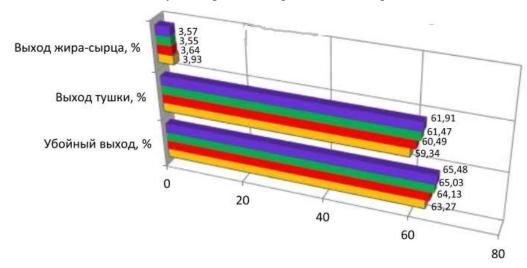


Рисунок 5 – Убойные качества кроликов, %

где: - контрольная группа, - 1 опытная группа, - 2 опытная группа, - 3 опытная группа.

Установлено что по убойному выходу тушки кроликов 1, 2 и 3 опытных групп превосходят контрольных на 0.85; 1.76 и 2.21%. По выходу тушек разница также возрастает от 1 до 3 опытной группы на 1.15; 2.13 и 2.57%.

Также выявлено, что наибольший убойный и выход тушек отслеживается в 3 опытной группе, с разницей 1,35, 0,45% и 1,42 и 0,44% 1 и 2 опытными группами.

Морфологический состав тушек кроликов представлен на рисунке 6.

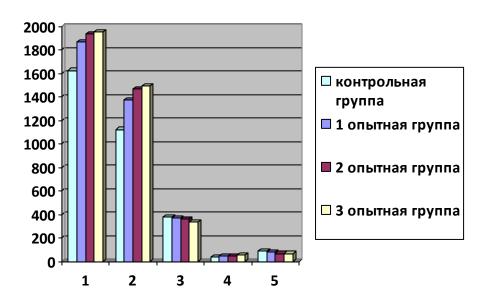


Рисунок 6 – Морфологический состав тушек кроликов

Установлено, что по выходу массы охлажденных тушек наблюдается преобладание у 1,2 и 3 опытных групп над контрольной на 13,04; 16,18 и 16,65%. При этом 2 и 3 группы превосходят 1 опытную группу на 3,60 и 4,15%. По выходу мякоти наблюдается подобная ситуация — 18,37; 23,32 и 24,81%; 6,07 и 7,89%. По массе жира — 18,14; 22,91 и 28,84% и 5,83 и 13,07%.

При этом, обратная тенденция наблюдается по выходу костей, сухожилий и жилок – контрольная группа превышает опытные соответственно на 2,90; 5,27; 11,0; 7,55 и 22,47%.

Индекс мясности в опытных группах превышает контрольную на 0,77; 1,11 и 1,46.

Пробиотическая добавка «Олин» также оказала благотворное влияние на развитость внутренних органов (рис. 7).

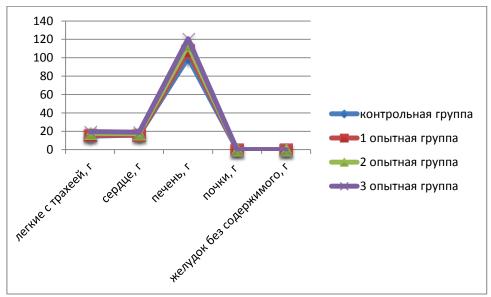


Рисунок 7 – Масса внутренних органов кроликов, г

В 1,2 и 3 опытных группах показатели развития внутренних органов были выше по сравнению с контрольной – легкие с трахеей на -6,38; 16,97; 25,41%, сердце на -2,06; 11,31; 17,52%, печень на -6,82; 12,02; 17,12%, почки на -3,79; 1,09; 5,55%, желудок без содержимого на -5,0; 17,97 и 21,37%. При этом наивысший показатель по развитию внутренних органов кроликов наблюдается в 3 опытной группе.

Разница с 1 и 2 опытными группами по выходу выше перечисленных внутренних органов составила – 20,33; 10,16; 15,78; 8,78; 11,05; 5,80; 1,83; 3,72; 17,23; 4,13%.

Заключение. На основании проведенных исследований мы аргументировали использование разных доз пробиотической добавки «Олин» в комбикормах для кроликов, положительно влияющих на динамику живой массы, среднесуточныне приросты, сохранности и мясную продуктивность. Установлено, что пробиотическая добавка «Олин» в концентрации с комбикормом 35 мг/кг живой массы привела к увеличению динамики живой массы на 5,22%, среднесуточного прироста на 28,04%, сохранности на 4,8%, убойному выходу и выходу массы туши кроликов на 2,21% и 2,57%.

Список литературы

- 1. Архипова, С.П. Влияние средства "Янтовет" на мясную продуктивность кроликов / С. П. Архипова, Л. Ф. Якупова, О. А. Грачева // Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. 2021. № 246. С. 6-9. ISSN 0451-5838. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/journal/issue/344831 (дата обращения: 25.02.2025). Режим доступа: для авториз. пользователей.
- 2. Братских В.Г., Семенченко С.В., Нефедова В.Н. Пушное звероводство //Методические указания к лабораторно-практическим занятиям для студентов факультета технологии с.-х. производства, п. Персиановский, 2004.-36 с.
- 3. Востроилов, А.В. Научные аспекты повышения продуктивности и качества продукции кролиководства на фоне применения пробиотических комплексов / А. В. Востроилов, Е. Е. Курчаева, Е. С. Артемов // Технологии и товароведение сельскохозяйственной продукции. 2020. № 1. С. 115-128. ISSN 2311-6870. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/journal/issue/314233 (дата обращения: 25.02.2025). Режим доступа: для авториз. пользователей.

- 4. Использование биодобавок комплексного действия в составе полнорационного гранулированного комбикорма в отрасли промышленного кролиководства / Е. Е. Курчаева, Е. Е. Кигсһауеva, Б. Косимов [и др.] // Технологии и товароведение сельскохозяйственной продукции. 2024. № 3 (26). С. 58-67. ISSN 2311-6870. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/journal/issue/366599 (дата обращения: 25.02.2025). Режим доступа: для авториз. пользователей.
- 5. Нефедова В.Н., Семенченко С.В., Савинова А.А. Технологический проект для крестьянско-фермерского хозяйства //В сборнике: Актуальные направления инновационного развития животноводства и современные технологии производства продуктов питания /Материалы международной научно-практической конференции. п. Персиановский, 2016. С.69-74.
- 6. Пробиотические препараты в системе оптимизированного питания и повышения качества мяса кроликов / А. А. Дерканосова, Е. Е. Курчаева, А. В. Востроилов [и др.] // Вестник Воронежского государственного университета инженерных технологий. 2021. № 4. С. 78-87. ISSN 2226-910X. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/journal/issue/317423 (дата обращения: 25.02.2025). Режим доступа: для авториз. пользователей.
- 7. Семенченко С.В., Засемчук И.В. Переработка продуктов животноводства в условиях фермерских хозяйств // Методические указания к лабораторно-практическим занятиям для студентов направления 110900.62 «Технология производства и переработки с.-х. продукции»: (издание 2-е дополненное и переработанное): п. Персиановский, 2014. 40 с.
- 8. Семенченко С.В., Нефедова В.Н., Савинова А.А., Пиденко М.А. Оценка качества туш с.-х. животных на линии убоя и первичной переработки //В сборнике: Селекция сельскохозяйственных животных и технология производства продукции животноводства /Материалы международной научно-практической конференции. 2016. С.116-123.
- 9. Семенченко С.В., Савинова А.А., Нефедова В.Н. Разработка технологии переработки мяса сельскохозяйственных животных //Инновационные пути развития АПК: проблемы и перспективы /Материалы международной научно-практической конференции: в 4-х томах. п. Персиановский, 2013. С.214-216.
- 10. Технологические подходы к выращиванию молодняка кроликов в условиях ооо «липецкий кролик» с применением пробиотических добавок / Е. Е. Курчаева, А. В. Востроилов, Е. С. Артемов, А. Н. Звягин // Технологии и товароведение сельскохозяйственной продукции. 2022. № 1. С. 63-72. ISSN 2311-6870. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/journal/issue/322244 (дата обращения: 25.02.2025). Режим доступа: для авториз. пользователей.

References

- 1. Arkhipova, S.P. The influence of "Yantovet" on the meat productivity of rabbits / S. P. Arkhipova, L. F. Yakupova, O. A. Gracheva // Scientific notes of the Kazan State Academy of Veterinary Medicine named after N.E. Bauman. 2021. No. 246. pp. 6-9. ISSN 0451-5838. Text : electronic // Lan : electronic library system. URL: https://e.lanbook.com/journal/issue/344831 (date of request: 02/25/2025). Access mode: for authorized users.
- 2. Bratskikh V.G., Semenchenko S.V., Nefedova V.N. Fur farming //Methodological guidelines for laboratory and practical classes for students of the Faculty of Agricultural Production Technology, Persianovsky, 2004. P.36.
- 3. Vostroilov, A.V. Scientific aspects of increasing productivity and quality of rabbit breeding products against the background of the use of probiotic complexes / A.V. Vostroilov, E. E. Kurchaeva, E. S. Artemov // Technologies and commodity science of agricultural products. 2020. No. 1. pp. 115-128. ISSN 2311-6870. Text: electronic // Lan: electronic library system. URL: https://e.lanbook.com/journal/issue/314233 (date of request: 02/25/2025). Access mode: for

authorized users.

- 4. The use of complex-action dietary supplements as part of complete granular compound feed in the field of industrial rabbit breeding / E. E. Kurchayeva, E. E. Kurchayeva, B. Kosimov [et al.] // Technologies and commodity science of agricultural products. 2024. № 3 (26). Pp. 58-67. ISSN 2311-6870. Text : electronic // Lan : electronic library system. URL: https://e.lanbook.com/journal/issue/366599 (date of request: 02/25/2025). Access mode: for authorized users.
- 5. Nefedova V.N., Semenchenko S.V., Savinova A.A. Technological project for peasant farming //In the collection: Current directions of innovative development of animal husbandry and modern technologies of food production / Proceedings of the international scientific and practical conference. Persianovsky, 2016. pp.69-74.
- 6. Probiotic drugs in the system of optimized nutrition and improving the quality of rabbit meat / A. A. Derkanosova, E. E. Kurchaeva, A.V. Vostroilov [et al.] // Bulletin of the Voronezh State University of Engineering Technologies. 2021. No. 4. pp. 78-87. ISSN 2226-910X. Text: electronic // Lan: electronic library system. URL: https://e.lanbook.com/journal/issue/317423 (date of request: 02/25/2025). Access mode: for authorized users.
- 7. Semenchenko S.V., Zasemchuk I.V. Processings of livestock products in farm conditions // Methodological guidelines for laboratory and practical classes for students of the direction 110900.62 "Technology of production and processing of agricultural products": (2nd edition supplemented and revised): Persianovsky, 2014. P.40.
- 8. Semenchenko S.V., Nefedova V.N., Savinova A.A., Pidenko M.A. Assessment of the quality of agricultural animal carcasses on the slaughter line and primary processing //In the collection: Breeding of agricultural animals and technology of livestock production / Proceedings of the international scientific and practical conference. 2016. pp.116-123.
- 9. Semenchenko S.V., Savinova A.A., Nefedova V.N. Development of technology for processing meat of farm animals //Innovative ways of agro-industrial complex development: problems and prospects /Proceedings of the international scientific and practical conference: in 4 volumes. Persianovsky, 2013. pp.214-216.
- 10. Technological approaches to the cultivation of young rabbits in the conditions of Lipetsk Rabbit LLC using probiotic additives / E. E. Kurchaeva, A.V. Vostroilov, E. S. Artemov, A. N. Zvyagin // Technologies and commodity science of agricultural products. 2022. No. 1. pp. 63-72. ISSN 2311-6870. Text : electronic // Lan : electronic library system. URL: https://e.lanbook.com/journal/issue/322244 (date of request: 02/25/2025). Access mode: for authorized users.

Информация об авторах

Семенченко Сергей Валерьевич - доцент, кандидат сельскохозяйственных наук кафедры разведения сельскохозяйственных животных, частной зоотехнии и зоогигиены имени академика П.Е. Ладана;

Алексанян Алина Гарниковна - магистрант кафедры разведения сельскохозяйственных животных, частной зоотехнии и зоогигиены имени академика П.Е. Ладана, направления Зоотехния.

Information about the authors

Semenchenko Sergey Valerievich - Associate Professor, Candidate of Agricultural Sciences of the Department of Breeding of Farm Animals, Private Animal Science and Zoohygiene named after academician P.E. Ladan:

Aleksanyan Alina Garnikovna - is a master's student at the Department of Breeding farm animals, private Zootechny and Zoo Hygiene named after academician P.E. Ladan, Zootechny.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПРОДУКТИВНЫХ КАЧЕСТВ СКОТА КАЛМЫЦКОЙ ПОРОДЫ РАЗНЫХ ЛИНИЙ

Семенченко С.В., Ежова Е.Н.

Аннотация. В процессе исследований была проведена сравнительная оценка крупного рогатого скота калмыцкой породы разной линейной принадлежности (Моряка 12054 и Манежа 7113). Цель работы – провести сопоставимый анализ продуктивных и мясных качеств калмыцкого скота разной линейной принадлежности в условиях ООО «Солнечное» Орловского района Ростовской области. Установлено, что в суточном возрасте бычки по живой массе не различались. В последующем, проявились некоторые различия в динамике живой массы. В 8-ми месячном возрасте проявилась разница в 2,75%, в 14-ти месяцев – 6,67%, в 18-ть месяцев -5,80% с превосходством 2 группы. Логична и динамика среднесуточных приростов во 2 группе, с разницей по возрастам – 2,99; 13,06; 3,04 и 6,03%. Установлено, что с 8-и месячного возраста и до конца выращивания в 18 месяцев, отличительной особенностью бычков 2 группы являлась в большую сторону разница по всем промерам. Наибольшее преобладание наблюдалось по высоте в холке – 2,63 и 0,88%; обхвату груди за лопатками -1.34 и 2.76%; высоте в крестие -1.54 и 1.08%. Подобает упомянуть, что бычки 2 группы характеризуются массивными, хорошо выраженными мясными формами. По индексам телосложения бычки 2 группы превалировали над бычками 1 группы во все периоды выращивания (8-18 месяцев). Расхождение по индексу сбитости. грудному и массивности составило в 8,14 и 18 месяцев соответственно - 1,34; 1,10; 2,43; 0,62; 2,65; 2,86; 0,84; 0,95 и 3,07%. Исследования продемонстрировали, что по промерам и индексам телосложения бычки 2 группы доминировали над бычками 1 группы по своему росту и развитию. К концу выращивания в 18 месяцев, контрольный убой показал, что бычки подопытных групп имели высшую категорию упитанности и высокую мясную продуктивность. Контрольный убой выявил, что туши бычков 2 группы наиболее тяжеловесны. По убойной массе и выходу массы туши разница составила – 21,03 и 7,12%. По выходу внутреннего жира-сырцы отличие было на уровне 20%. Убойный выход также дисконтировал и составил 1,3%. По выходу шкур различие было равно – 8,29%. Анализ полученных данных показал, что по выходу полутуш 2 группа существенно преобладала 1 группу на 7,09%. Соответственно и по выходу мякоти и жира перевешивали на 7,42 и 28,12%. При этом, во 2 группе отмечен более низкий выход костей и сухожилий в сравнении c 1 группой – 0,02 и 0,01%. Индекс мясности, который является одним из значимых квалитативных показателей туши на 0,1, что продемонстрировало выше предпочтительный паритет мякоти и костей. во 2 группе подопытных бычков.

Ключевые слова. Порода скота, бычки, динамика живой массы, среднесуточный прирост, промеры, индексы телосложения, убойная массма, масса туши, убойный выход.

COMPARATIVE CHARACTERISTICS OF PRODUCTIVE QUALITIES OF KALMYK CATTLE OF DIFFERENT LINES

Semenchenko S.V., Yezhova E.N.

Annotation: In the course of the research, a comparative assessment of Kalmyk cattle of different lineages (Seaman 12054 and Man 7113) was carried out. The purpose of the work is to conduct a comparable analysis of the productive and meat qualities of Kalmyk cattle of different lineages in the conditions of Solnechnoye LLC in the Oryol district of the Rostov region. It has been found that the bulls did not differ in body weight at the age of one day. Subsequently, there were some differences in the dynamics of body weight. At the age of 8 months, there was a difference of

2.75%, at 14 months - 6.67%, at 18 months - 5.80% with the superiority of the group 2. The dynamics of average annual gains in group 2 is also logical, with an age difference of 2.99%, 13.06%, 3.04%, and 6.03%. It has been found that from the age of 8 months to the end of rearing at 18 months, a distinctive feature of the group 2 calves was a large difference in all measurements. The greatest predominance was observed in height at the withers – 2.63 and 0.88%; chest circumference behind the shoulder blades – 1.34 and 2.76%; height at the sacrum – 1.54 and 1.08%. It should be mentioned that the bulls of the 2nd group are characterized by massive, welldefined meat forms. According to the body indices, the bulls of group 2 prevailed over the bulls of group 1 in all growing periods (8-18 months). The discrepancy in the index of bulkiness, thoracic and massiveness was 8.14 and 18 months, respectively. - 1,34; 1,10; 2,43; 0,62; 2,65; 2,86; 0,84; 0,95 and 3.07%. Studies have shown that in terms of body measurements and body indexes, the bulls of group 2 dominated the bulls of group 1 in terms of their height and development. By the end of rearing at 18 months, the control slaughter showed that the bulls of the experimental groups had the highest fatness category and high meat productivity. The control slaughter revealed that the carcasses of the bulls of group 2 are the heaviest. In terms of slaughter weight and carcass mass yield, the difference was 21.03% and 7.12%. In terms of the output of internal raw fat, the difference was at the level of 20%. The slaughter yield was also discounted and amounted to 1.3%. The difference in the output of skins was 8.29%. An analysis of the data obtained showed that in terms of half-carcass yield, group 2 significantly dominated group 1 by 7.09%. Accordingly, the yield of pulp and fat outweighed by 7.42% and 28.12%. At the same time, in group 2 there was a lower yield of bones and tendons compared to group 1-0.02 and 0.01%. The meat index, which is one of the significant qualitative indicators of carcasses, is 0.1 higher, which demonstrated the preferred parity of pulp and bones. in the 2nd group of experimental bulls.

Keywords: Cattle breed, calves, dynamics of live weight, average daily gain, measurements, body indexes, slaughter weight, carcass weight, slaughter yield.

Введение. Специализированная отрасль мясного скотоводства — это одна из отраслей животноводства, обеспечивающая население Ростовской области продуктами питания собственного производства, что является насущной проблемой.

Мясное скотоводство, особенно восточных районов Ростовской области, зависит от климатических условий региона, технологии содержания животных, их генотипа, состава рациона, обусловленного нетривиальными климатическими факторами, наличием пастбищ и т.д. Восточные районы Ростовской области — это засушливые степные и полупустынные территории, со значительным количеством природных пастбищ, которые задействованы для выпаса крупного рогатого скота калмыцкой породы.

Калмыцкая порода скота — это крупная, высоко скороспелая порода, которая на грубых дешевых кормах быстро набирает живую массу (450-600 г к 16-18 месячному возрасту) и характеризуется высокой пищевой ценностью мяса. Кроме того, у породы отмечена сезонность воспроизводства и она не требует больших затрат на содержание и кормление. Также порода характеризуется высоким убойным выходом — 65-73% и выходом 4,5-5,5 кг мякоти на 1 кг костей. Все это отражает необходимость продолжать традиционное использование калмыцкого скота в восточных районах Ростовской области.

Калмыцкий скот — это неоднородные животные по типу телосложения, продуктивности и племенной ценности. Среди животных выделяют имеющих индивидуальные биологические и хозяйственные особенности, позволяющие совершенствовать селекционную работу с породой, которая будет направлена на получение высококачественного потомства с хорошей оплатой корма и большими приростами живой массы.

Актуальность работы состоит в выявлении хозяйственно-биологических особенностей скота калмыцкой породы в засушливых районах Ростовской области [1-10].

Цель работы – провести сопоставимый анализ продуктивных и мясных качеств калмыцкого скота разной линейной принадлежности в условиях ООО «Солнечное» Орловского района Ростовской области.

Задачей работы являлось изучение динамики живой массы бычков с суточного до 18-ти месячного возраста, среднесуточных приростов, расчет индексов телосложения экстерьера и мясной продуктивности животных.

Материал и методы исследований. Исследования проводились в условиях ООО «Солнечное» Орловского района Ростовской области.

Для исследований было сформировано 2 группы суточных бычков по 15 голов в каждой. 1 группа состояла из потомков Моряка 12054, 2 группа – потомки линии Манежа 7113. Все группы формировали методом пар-аналогов. Содержание – круглогодовое пастбищное.

При проведении исследований, животных ежемесячно взвешивали, с расчетом среднесуточных приростов. Линейный рост рассчитали после взятия основных промеров и вычисления индексов телосложения. По результатам контрольного убоя трех бычков из каждой группы определяли — убойную массу, массу туши, убойный выход и выход внутреннего жира. Все результаты были обработаны с использование компьютерной программы Excel.

Результаты исследований и их обсуждение. Выявленные различия по динамике живой массы у потомков разной линейной принадлежности представлена на рисунке 1.

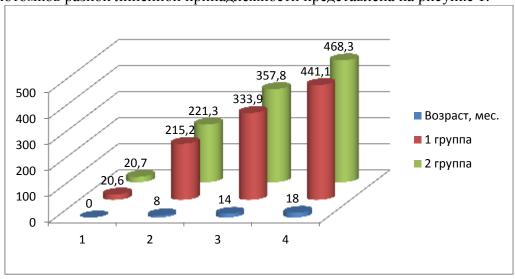


Рисунок 1 – Динамика живой массы подопытных бычков, кг

Установлено, что в суточном возрасте бычки по живой массе не различались. В последующем, проявились некоторые различия в динамике живой массы. В 8-ми месячном возрасте проявилась разница в 2,75%, в 14-ти месяцев -6,67%, в 18-ть месяцев -5,80% с превосходством 2 группы.

Логична и динамика среднесуточных приростов во 2 группе, с разницей по возрастам – 2,99; 13,06; 3,04 и 6,03% (рис. 2).

Индексы телосложения, описывающие рост и развитие подопытных бычков представлены на рисунке 3.

Установлено, что с 8-и месячного возраста и до конца выращивания в 18 месяцев, отличительной особенностью бычков 2 группы являлась в большую сторону разница по всем промерам. Наибольшее преобладание наблюдалось по высоте в холке -2,63 и 0,88%; обхвату груди за лопатками -1,34 и 2,76%; высоте в крестце -1,54 и 1,08%. Подобает упомянуть, что бычки 2 группы характеризуются массивными, хорошо выраженными мясными формами.

По индексам телосложения бычки 2 группы превалировали над бычками 1 группы во все периоды выращивания (8-18 месяцев) (рис. 4).

Расхождение по индексу сбитости, грудному и массивности составило в 8,14 и 18 месяцев соответственно - 1,34; 1,10; 2,43; 0,62; 2,65; 2,86; 0,84; 0,95 и 3,07%.

Исследования продемонстрировали, что по промерам и индексам телосложения бычки 2 группы доминировали над бычками 1 группы по своему росту и развитию.

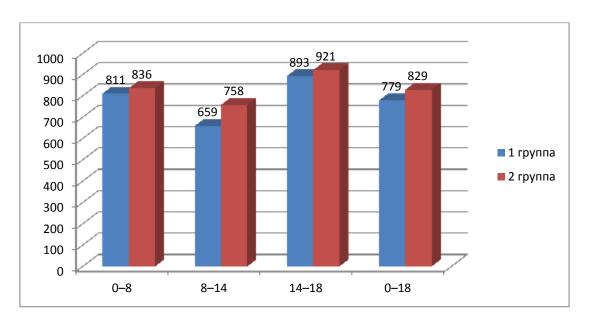


Рисунок 2 – Среднесуточные приросты подопытных бычков, г

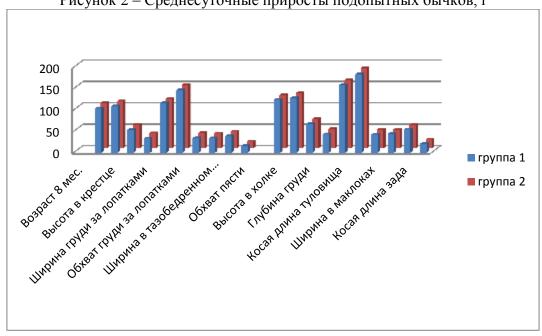


Рисунок 3 – Промеры подопытных бычков, см

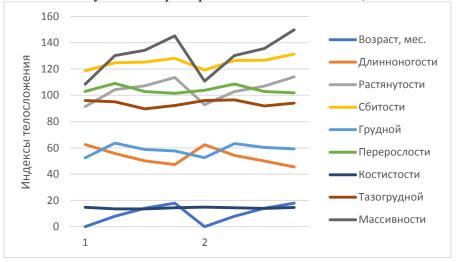


Рисунок 4 – Индексы телосложения бычков, %

К концу выращивания в 18 месяцев, контрольный убой показал, что бычки подопытных групп имели высшую категорию упитанности и высокую мясную продуктивность (рис. 5).

Рисунок 5 – Мямная продуктивность подопытных бычков, кг/%

Контрольный убой выявил, что туши бычков 2 группы наиболее тяжеловесны. По убойной массе и выходу массы туши разница составила — 21,03 и 7,12%. По выходу внутреннего жира-сырцы отличие было на уровне 20%. Убойный выход также дисконтировал и составил 1,3%. По выходу шкур различие было равно — 8,29%. Оценка морфологического сотава туш подопытных бычков позволила позволила выявить соотношение съедобных и несъедобных частей туши (рис. 6).

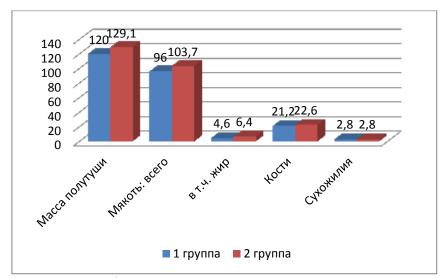


Рисунок 6 – Морфологический состав туш подопытных бычков, кг

Анализ полученных данных показал, что по выходу полутуш 2 группа существенно преобладала 1 группу на 7,09%.

Соответственно и по выходу мякоти и жира перевешивали на 7,42 и 28,12%. При этом, во 2 группе отмечен более низкий выход костей и сухожилий в сравнении с 1 группой -0,02 и 0,01%. Индекс мясности, который является одним из значимых квалитативных показателей туши выше на 0,1, что продемонстрировало предпочтительный паритет мякоти и костей. во 2 группе подопытных бычков.

Заключение. Эффективность исследований продемонстрировало, что калмыцкий скот

может приспосабливаться к любым условиям окружающей среды Круглогодовое пастбищное содержание способствует получению высококачественной говядины. Но хотя хорошие результаты показали бычки разных групп линейной принадлежности, преимущество наблюдалось 2 группы бычков линии Манежа 7113. За весь период выращивания по динамике живой массы, среднесуточным приростам, промерам экстерьера и индексам телосложения, а также убойной массы и убойному выходу бычки линии Манежа 7113 превосходили бычков линии Моряка 12054 на 5,80; 6,03; 3,07; 8,29 и 7,12%.

Список литературы

- 1. Зеленков, А.П. Основные направления селекции мясного скота при создании высокопродуктивных стад / А.П. Зеленков, П.И. Зеленков, Г.А. Зеленкова // Вестник Донского государственного аграрного университета. 2014. № 4-1. С. 35-41. ISSN 2311-1968. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/journal/issue/292767 (дата обращения: 03.03.2025). Режим доступа: для авториз. пользователей.
- 2. Калмыцкая порода скота в племенных хозяйствах России / Ф.Г. Каюмов, В.Н. Черномырдин, Л.А. Маевская [и др.] // Известия Оренбургского государственного аграрного университета. 2014. № 5. С. 116-119. ISSN 2073-0853. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/journal/issue/292146 (дата обращения: 03.03.2025). Режим доступа: для авториз. пользователей.
- 3. Каюмов, Ф.Г. Селекционно-племенная работа с калмыцкой породой скота на современном этапе / Ф.Г. Каюмов, А.Ф. Шевхужев, Н.П. Герасимов // Известия Санкт-Петербургского государственного аграрного университета. 2017. № 48. С. 64-72. ISSN 2078-1318. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/journal/issue/303436 (дата обращения: 03.03.2025). Режим доступа: для авториз. пользователей.
- 4. Клевин А.Д., Семенченко С.В. Рост и развитие бычков калмыцкой породы //В сборнике: Актуальные направления инновационного развития животноводства, современные технологии производства продуктов питания и их безопасность. /Материалы международной научно-практической конференции. пос. Персиановский, 2021. С. 106-110.
- 5. Никонова В.С., Семенченко С.В. Убойные качества бычков калмыцкой породы // Развитие животноводства, современные технологии производства продуктов питания, производственная и гигиеническая безопасность здоровья. /Материалы международной научно-практической конференции : в 2 ч.. пос. Персиановский, 2023. С. 7-9.
- 6. Отаров, А.И. Продуктивность и гематологические показатели скота калмыцкой породы и его помесей / А. И. Отаров, Ф. Г. Каюмов, Р. Ф. Третьякова // Известия Оренбургского государственного аграрного университета. 2022. № 5. С. 254-260. ISSN 2073-0853. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/journal/issue/323795 (дата обращения: 03.03.2025). Режим доступа: для авториз. пользователей.
- 7. Парфенова О.В., Семенченко С.В. Ресурсосберегающие технологии производства мяса крупного рогатого скота // Актуальные направления инновационного развития животноводства и современные технологии производства продуктов питания. /Материалы международной научно-практической конференции. пос. Персиановский, 2020. С.55-59.
- 8. Приступа В.Н., Семенченко С.В. Технология мясного скотоводства в СПК племколхозе "Комиссаровский" // Селекционно-генетические и технологические аспекты производства продуктов животноводства, актуальные вопросы безопасности жизнедеятельности и медицины / Материалы международной научно-практической конференции посвященной 90-летнему юбилею биотехнологического факультета. 2019. С.101-106.
- 9. Приступа В.Н., Семенченко С.В., Горбанев М.В. Возрастные изменения продуктивности бычков калмыцкой породы различных линий //В сборнике: Селекция сельскохозяйственных животных и технология производства продукции животноводства /Материалы

всероссийской научно-практической конференции. 2017. - С.29-32.

10. Садыков, М.М. Эффективность выращивания бычков калмыцкого мясного скота в предгорной провинции дагестана / М. М. Садыков, Г. А. Симонов, П. А. Кебедова // Известия Дагестанского ГАУ. - 2024. - № 23. - С. 87-93. - ISSN 2686-7591. - Текст: электронный // Лань: электронно-библиотечная система. - URL: https://e.lanbook.com/journal/issue/362105 (дата обращения: 03.03.2025). - Режим доступа: для авториз. пользователей.

References

- 1. Zelenkov, A.P. The main directions of breeding beef cattle in the creation of highly productive herds / A.P. Zelenkov, P.I. Zelenkov, G.A. Zelenkova // Bulletin of the Don State Agrarian University. 2014. No. 4-1. pp. 35-41. ISSN 2311-1968. Text: electronic // Lan: electronic library system. URL: https://e.lanbook.com/journal/issue/292767 (date of request: 03.03.2025). Access mode: for authorized users.
- 2. Kalmyk cattle breed in Russian breeding farms / F.G. Kayumov, V.N. Chernomyrdin, L.A. Mayevskaya [et al.] // Proceedings of the Orenburg State Agrarian University. 2014. No. 5. pp. 116-119. ISSN 2073-0853. Text: electronic // Lan: electronic library system. URL: https://e.lanbook.com/journal/issue/292146 (date of request: 03.03.2025). Access mode: for authorized users.
- 3. Kayumov, F.G. Animal selection and breeding work with Kalmyk cattle at the present stage / F.G. Kayumov, A.F. Shevkhuzhev, N.P. Gerasimov // Proceedings of the St. Petersburg State Agrarian University. 2017. No. 48. pp. 64-72. ISSN 2078-1318. Text: electronic // Lan: electronic library system. URL: https://e.lanbook.com/journal/issue/303436 (date of request: 03.03.2025). Access mode: for authorized users.
- 4. Klevin A.D., Semenchenko S.V. Growth and development of Kalmyk bull calves //In the collection: Current directions of innovative development of animal husbandry, modern technologies of food production and their safety. /Materials of the international scientific and practical conference. Persianovsky, 2021, pp. 106-110.
- 5. Nikonova V.S., Semenchenko S.V. Slaughter qualities of Kalmyk bull calves //In the collection: The development of animal husbandry, modern technologies of food production, industrial and hygienic health safety. /Materials of the international scientific and practical conference: in 2 parts. Persianovsky, 2023, pp. 7-9.
- 6. Otarov, A.I. Productivity and hematological parameters of Kalmyk cattle and their hybrids / A. I. Otarov, F. G. Kayumov, R. F. Tretyakova // Proceedings of the Orenburg State Agrarian University. 2022. No. 5. pp. 254-260. ISSN 2073-0853. Text: electronic // Lan: electronic library system. URL: https://e.lanbook.com/journal/issue/323795 (date of request: 03.03.2025). Access mode: for authorized users.
- 7. Parfenova O.V., Semenchenko S.V. Resource-saving technologies for cattle meat production //In the collection: Current directions of innovative development of animal husbandry and modern technologies of food production. /Materials of the international scientific and practical conference. Persianovsky, 2020, pp.55-59.
- 8. Pristupa V.N., Semenchenko S.V. Technology of beef cattle breeding in the Komissarovsky breeding farm // In the collection: Breeding, genetic and technological aspects of livestock production, current issues of life safety and medicine / Materials of the international scientific and practical conference dedicated to the 90th anniversary of the Faculty of Biotechnology. 2019. -pp.101-106.
- 9. Pristupa V.N., Semenchenko S.V., Gorbanev M.V. Age-related changes in the productivity of Kalmyk bull calves of various lines // In the collection: Breeding of agricultural animals and technology of livestock production / Materials of the All-Russian scientific and practical conference. 2017. pp.29-32.
- 10. Sadykov M.M., Simonov G. A., Kebedova P.A. Efficiency of breeding calves of Kalmyk beef cattle in the foothill province of Dagestan // News of Dagestan GAU. 2024. No. 23. pp. 87-93. ISSN 2686-7591. Text : electronic // Lan : electronic library system. URL:

https://e.lanbook.com/journal/issue/362105 (date of request: 03.03.2025). - Access mode: for authorized users.

Информация об авторах

Семенченко Сергей Валерьевич - доцент, кандидат сельскохозяйственных наук кафедры разведения сельскохозяйственных животных, частной зоотехнии и зоогигиены имени академика П.Е. Ладана;

Ежова Елена Николаевна - магистрант кафедры разведения сельскохозяйственных животных, частной зоотехнии и зоогигиены имени академика П.Е. Ладана, направления Зоотехния.

Information about the authors

Semenchenko Sergey Valerievich - Associate Professor, Candidate of Agricultural Sciences of the Department of Breeding of Farm Animals, Private Animal Science and Zoohygiene named after academician P.E. Ladan;

Yezhova Elena Nikolaevna - is a master's student at the Department of Breeding Farm Animals, Private Animal Science and Animal Hygiene named after Academician P.E. Ladan, in the field of Animal Science.

РЕФЕРАТЫ

4.1.1 ОБЩЕЕ ЗЕМЛЕДЕЛИЕ И РАСТЕНИЕВОДСТВО

УДК 633.11:631.524.7:631.582

ВЛИЯНИЕ ЛИСТОВЫХ ПОДКОРМОК ПРЕПАРАТОМ РЕЛИКТ Р НА УРОЖАЙНОСТЬ ОЗИМОЙ ПШЕНИЦЫ И КАЧЕСТВО ЗЕРНА

Кирин А.В., Зеленская Г.М., Марченко Д.М.

ФГБОУ ВО «Донской государственный аграрный университет»

ФГБНУ Аграрный Научный Центр «Донской»

Аннотация: Представлены результаты по изучению влияния предпосевной обработки семян и листовой подкормки на посевах озимой пшеницы сорта Вольный Дон органоминеральным удобрением Реликт Р на урожайность и качество зерна в условиях южной зоны Ростовской области по предшественникам подсолнечник и горох, установлена корреляционная зависимость урожайности озимой пшеницы с элементами структуры. Проведение листовой подкормки на посевах озимой пшеницы привело к повышению ее урожайности на всех вариантах опыта. В среднем за три года прибавка урожайности составила от 0,18 до 0,68 т/га после гороха и от 0,09 до 0,40 т/га после подсолнечника. Наиболее эффективным по предшественнику горох были варианты с предпосевной обработкой и листовыми подкормками на посевах осенью, в период весеннего кущения и выхода в трубку (C+O+B+B) и на вариантах в фазу колошения (C+O+B+B+K), прибавка урожайности по сравнению к контролем составила 0,68 и 0,60 т/га. Урожайность озимой пшеницы по предшественнику горох в основном складывалась за счет массы зерна в колосе (r = 0.97) и количества зерен в колосе (r = 0.85), после подсолнечника урожайность зависела от массы 1000 ит (r = 0.65) и массы зерна с колоса (r = 0.84). Листовые подкормки органоминеральным удобрением Реликт Р на посевах озимой пшеницы повышали показатели качества зерна. На контрольном варианте содержание белка в зерне озимой пшеницы сорта Вольный Дон, после предшественника горох было 13,2 %, на посевах с применением Реликт Р белковость зерна повышалась от 13,4 до 14,1 % и наибольшей была на варианте с пятикратной обработкой. После подсолнечника содержание белка в зерне озимой пшеницы на вариантах опыта находилось в пределах от 11,8 % (контроль) до 12,8 % В зерне озимой пшеницы, изучаемых опытов с листовыми обработками, выращиваемых после подсолнечника, содержание клейковины было ниже, чем после гороха. На этих вариантах содержание клейковины в зерне варьировало от 23,7 % на варианте C+O до 25,4 % на варианте C+O+B+B+K. На вариантах после гороха содержание клейковины в зерне пшеницы было от 25,4 до 27,1 %.

Ключевые слова: озимая пшеница, листовая подкормка, урожайность, содержание белка, клейковина, стекловидность, натура зерна, корреляция.

УДК 635.7: 631.52

ЗНАЧЕНИЕ НЕКОРНЕВЫХ ОБРАБОТОК СТИМУЛЯТОРАМИ РОСТА В НАРАСТАНИИ НАДЗЕМНОЙ ЧАСТИ РАССАДЫ И ПОЛУЧЕНИИ ВЫСОКОГО УРОЖАЯ ГИБРИДОВ ТОМАТА

Авдеенко С.С., Авдеенко А.П.

ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация: В статье дается подробный анализ действия обработки стимуляторами роста подкормок стимуляторами роста биологической природы на параметры развития рассады гибридов томата открытого грунта Государь и Донской, а также среднюю массу плодов и показатели ранней и общей урожайности. Установлено положительное влияние примененных биостмуляторов на высоту рассады гибридов Государь и Донской с минимальной и при этом не подтвержденной математически разницей между собой. Действие препаратов можно разделить фактически на 2 группы, включающие по 5

препаратов. 1 группа объединяет препараты: Байкал ЭМ 1, Биосил, Оберегъ, Эпин-экстра, Альбит, высота рассады которых достигает 26,0 см, а площадь листовой поверхности 132,4 см²: Вторая группа имеет высоту растений от 26,1 до 27,0 см, а максимальная площадь листовой поверхности не превышает 155 см² и, она объединяет препараты: Гумат калия, Вигор форте, Фосфатовит, Изабион и Экстрасол. Применяемые для некорневых обработок стимуляторы роста способствуют увеличению средней массы плодов, с большим эффектом по препаратам Фосфатовит и Изабион по обоим гибридам, однако масса плодов гибрида Донской по этим вариантам больше на 15-17 г. По обоим гибридам наиболее сильный эффект в увеличении величины урожая показали препараты Гумат калия, Вигор форте, Фосфатовит, Изабион и Экстрасол в порядке увеличения показателя. Хотя выделился у обоих гибридов препарат Экстрасол, как самый продуктивный, при этом разница с препаратами Изабион и Фосфатовит не подтверждается математической обработкой. Однако есть и определенные особенности. Первая — реакция растений не только на применяемые препараты, но и на климатические условия года — так 2025 г был менее урожайный в сравнении с 2024 г.

Ключевые слова: стимуляторы роста, площадь листовой поверхности, некорневые обработки, гибрид, томат, урожайность.

4.1.3 АГРОХИМИЯ, АГРОПОЧВОВЕДЕНИЕ, ЗАЩИТА И КАРАНТИН РАСТЕНИЙ

УДК 633.63:631.5

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ГЕРБИЦИДОВ НА ПОСЕВАХ САХАРНОЙ СВЕКЛЫ ПРИ СМЕШАННОМ ТИПЕ ЗАСОРЕННОСТИ

Фетюхин И.В., Абрамова Е.П., Винтовкин В.М.

ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация: Применение современных средств химизации свекловодства с учетом видового разнообразия сорных растений в агрофитоценозах является значительным резервом в повышении потенциальной продуктивности сахарной свеклы. В статье приведены результаты исследований по изучению биологической и агроэкономической эффективности использования гербицидов и их баковых смесей на посевах сахарной свеклы при смешанном типе засоренности. В опытах по общепринятым методикам изучена структура сорного компонента в посевах сахарной свеклы; установлена биологическая эффективность применения послевсходовых гербицидов и их баковых смесей на посевах сахарной свеклы; определена полевая всхожесть, густота стояния растений и средняя масса корнеплодов; определены параметры корнеплодов сахарной свеклы; урожайности uкачества дана экономическая биоэнергетическая оценка эффективности применения послевсходовых гербицидов на посевах сахарной свеклы. На основании проведенных исследований установлено, что против смешанного типа засоренности высокую эффективность обеспечивает послевсходовое применение гербицидов в три волны засоренности посевов по схеме: 1-я обработка Бетарен Супер нормой расхода 1,0 л/га; 2-я обработка Митрон нормой расхода 2 л/га в фазу семядолей сорняков в фазе 2-х настоящих листьев культуры; 3-я обработка Арбитр нормой расхода 0,03 π л/га в фазе 4 настоящих листьев культуры + Π AB ЭТД-90 нормой расхода 0,2 π /га.

Ключевые слова: сахарная свекла, сорные растения, гербициды, урожайность корнеплодов, сбор сахара.

УДК 632:633.854.78

РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ СОВРЕМЕННЫХ СРЕДСТВ ЗАЩИТЫ РАСТЕНИЙ ПРИ ВЫРАЩИВАНИИ ПОДСОЛНЕЧНИКА В ПРИАЗОВСКОЙ ЗОНЕ РОСТОВСКОЙ ОБЛАСТИ

Пойда В.Б., Збраилов М.А., Фалынсков Е.М.

ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация: Исследования показали, что использование регуляторов роста растений с ростостимулирующими регулирующими защитными, uрост функциями культивировании подсолнечника в приазовском регионе Ростовской области дает положительные результаты. Способствовало подавлению развития альтернариоза, вызывало снижение высоты растений, увеличение корневой массы, массы сырых листьев и диаметра корзинки. В среднем за два года исследований максимальная урожайность маслосемян подсолнечника – 3,26 т/га, 3,22 т/га и 3,22 т/га была сформирована в вариантах с применением препаратов Архитект Прайм (1,0 кг/га), Архитект Прайм (0,8 кг/га) и Архитект + сульфат аммония Турбо $(1,5 + 0,8 \ \kappa \epsilon / \epsilon a)$, вносимых в фазу развития подсолнечника 2-е междоузлие (GS 32 по шкале BBCH). Прибавки от уровня контроля составили 0,45, 0,41 и 0,41 т/га соответственно.

Ключевые слова: подсолнечник, регуляторы роста растений, поражаемость болезнями, биометрические показатели, урожайность маслосемян.

4.2.5 РАЗВЕДЕНИЕ, СЕЛЕКЦИЯ, ГЕНЕТИКА И БИОТЕХНОЛОГИЯ ЖИВОТНЫХ

УДК 636.051

О СОЗДАНИИ ПЛЕМЕННОГО РЕПРОДУКТОРА ООО «ГЕРЕФОРД» ПО РАЗВЕДЕНИЮ КРУПНОГО РОГАТОГО СКОТА ГЕРЕФОРДСКОЙ ПОРОДЫ

Мункуев В.Ч., Каюкова С.Н., Викулина Н.А., Дегтярь А.С., Хорошайло Т.А., Плужников Г.Л.

Забайкальский аграрный институт — филиал ФГБОУ ВО «Иркутский государственный аграрный университет имени А.А. Ежевского»

ФГБОУ ВО «Донской государственный аграрный университет»

ФГБОУ ВО «Кубанский государственный аграрный университет имени И.Т. Трубилина»

Аннотация: В работе представлен анализ особенностей разведения крупного рогатого скота герефордской породы в условиях созданного племенного репродуктора ООО «Герефорд», расположенного на территории Забайкальского аграрного института – филиала Иркутского государственного аграрного университета имени А. А. Ежевского. Период исследования охватывает четыре года (с 2019 по 2022) и включает комплексную оценку племенных и продуктивных характеристик всего поголовья. Для достижения объективной оценки использовался широкий спектр методов, включающих в себя комплексную оценку животных, позволяющие оценить их экстерьерные признаки, современные методы иммуногенетического тестирования, а также возможности информационно-аналитической системы «СЕЛЭКС. Мясной скот», предоставляющей мощный инструмент для обработки больших объемов данных о животных. Особое внимание уделено анализу влияния специфических условий содержания и кормления животных в условиях резко континентального климата Восточного Забайкалья, характеризующегося суровыми зимами и засушливым летом, с большими колебаниями Были проанализированы особенности рационов кормления, обеспечения животных необходимым укрытием в зимний период, а также влияние климатических факторов на продуктивность и здоровье скота. Материалы данной статьи представляют собой ценный практический материал, который может быть успешно использован специалистами в области животноводства для дальнейшей оптимизации племенной работы, повышения эффективности разведения герефордского скота не только в Забайкальском крае, но и в других регионах с аналогичными климатическими и хозяйственными условиями, способствуя развитию мясного животноводства и повышению его экономической эффективности.

Ключевые слова: мясное скотоводство, герефордская порода, племенной репродуктор, разведение, коровы, стадо.

4.2.4 ЧАСТНАЯ ЗООТЕХНИЯ, КОРМЛЕНИЕ, ТЕХНОЛОГИИ ПРИГОТОВЛЕНИЯ КОРМОВ И ПРОИЗВОДСТВА ПРОДУКЦИИ ЖИВОТНОВОДСТВА

УДК 631.95:636.085:636.087.2

КОНФИГУРАЦИЯ ПАРАМЕТРОВ ПИТАТЕЛЬНОСТИ СУХОЙ РАСТВОРИМОЙ КОРМОВОЙ РАСТИТЕЛЬНОЙ СМЕСИ ПОСЛЕ МИКРОБИОЛОГИЧЕСКОЙ КОНВЕРСИИ

Козлов Е.Е., Миронова О.А.

ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы»;

ФГБУ «Всероссийский центр карантина растений»

ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация: Потребность снижения себестоимости продукции актуальна и в социальнозначимых сферах. Несмотря на государственные дотации и всестороннюю изученность, молочная отрасль скотоводства в части экономической деятельности относится к венчурной категории инвестиций и имеет тенденцию сохранению Необходимость высокотехнологичного обеспечения данного направления во многом обусловлена многогранностью биологического организма, частности видовым потенциалом крупного рогатого скота, на котором основывается весь производственный процесс. На этом фоне, сопоставленным со стимуляцией ценовой конкурентоспособности выходного сырья, снижение стоимости основных ресурсных средств требует непрерывной актуализации с учетом локальных возможностей предприятия и конъюнктуры рынка. Сокращение в рационе молодняка товарного молока приносит высокую рентабельность, но допустимость подобных приемов возможна лишь за счет применения дорогостоящих ЗЦМ. Разработанная опытная сухая растворимая растительная смесь показала перспективные результаты при адресном использовании в схеме кормления телят. Происхождение её компонентного состава не позволяет заместить натуральный секрет и его искусственные аналоги на всех возрастных этапах. Эффективным решением стала микробиологическая обработка субстрата на стадии производства, что в свою очередь является экологически чистым методом. исключающим факторы негативного влияния синтетических компонентов промышленного происхождения. Изменения конфигурации энергетических параметров достигли 23%, что детерминировано значением 1,43 ЭКЕ ферментированных образцов, при 1,5 ЭКЕ в принятом к сравнению цельнозаменителе. Результат биоконверсии по отношению к нативным пробам превалировал ростом средней концентрации сырого протеина на 79 г/кг (7,9%), моно- и дисахаридов на 65 г/кг (6,5%), сырого жира -12 г/кг (1,2%), крахмала — 87 г/кг (8,7%); деструкцией клетчатки на 121 г/кг (12,1%). Помимо этого, зафиксирована положительная трансформация уровня витаминов группы В и Е от 115% до 170%, девяти незаменимых аминокислот в среднем на 22,5%.

Ключевые слова. Микробиологическая ферментация, закваска Леснова, параметры нутриентов, заменитель цельного молока, белково-энергетическая недостаточность.

УДК 636.084.1:636.085.64

МНОГОФАКТОРНЫЙ ПРИЕМ ПРЕДУПРЕЖДЕНИЯ РОСТА УРОВНЯ АЛИМЕНТАРНЫХ РАССТРОЙСТВ КОРМОВОЙ ЭТИОЛОГИИ СРЕДИ МОЛОДНЯКА КРУПНОГО РОГАТОГО СКОТА МОЛОЧНОГО ПЕРИОДА

Козлов Е.Е., Миронова О.А.

ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы»;

ФГБУ «Всероссийский центр карантина растений»

ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация. У каждой таксономической группы животных превалируют характерные именно их виду заболевания. Несмотря на многолетние селекционные трансформации и адаптивные возможности на уровне генной инженерии, не исключение и сельскохозяйственные высокопродуктивные особи. В значительной степени нозологическая

структура в незаразной её части обусловлена морфофункциональным характером формирования организма. У жвачных физиологическая специфика функционирования пищеварительной системы определена целым рядом производственно-полезных признаков и особенностей. Отсутствие незаменимых аминокислот и способность синтезировать животный белок при травоядном типе питания связаны с колоссальными привесами, скоростью роста и продуктивностью. Но отрицательным фактором, в том числе в целом для скотоводческой отрасли, служит онтогенез формирования многокамерного желудка, который при рождении у молодняка имеет структурно-функциональные параметры, характерные для моногастричных животных. Техника использования крупного рогатого скота включая воспроизводство весьма многогранна и требует всестороннего квалифицированного подхода. Однако, и при направленной профессиональной позиции вышечпомянутые аспекты не позволяют избежать поражения поголовья телят одним из самых повсеместных алиментарных расстройств – диспепсии. В поставленном на молодняке опыте удалось установить критерии значимости термической обработки сборного молока перед выпойкой и превентивное использование электролитной добавки в критические периоды, характеризующиеся пиковыми показателями регистрации случаев расстройств кормовой этиологии. Полученные результаты отражают высокую валидность примененного многофакторного метода профилактики. У опытного поголовья отмечен рост устойчивости к возникновению и развитию простой формы диспепсии до 76%, отсутствовали тяжелая форма течения и рецидивы. В части предупреждения счет пастеризации удалось сократить уровень бактериальной патогенеза обсемененности выпаиваемого молока на 53,7%, эскалация тяжести течения в зарегистрированных случаях была предупреждена электролитной кормовой смесью, при этом сокращение девиации в сыворотке крови солей Na^+ составило до 5,7%, K^+ до 4,4%.

Ключевые слова. Превентивное кормление, диспепсия, телята, профилактика алиментарных расстройств, водно-солевой баланс, пастеризация, бактериальная обсемененность, условно-патогенная микрофлора.

УДК 636.087.7:636.033

СРАВНИТЕЛЬНАЯ ОЦЕНКА ВЛИЯНИЯ БЕЛКОВЫХ ДОБАВОК НА ХИМИЧЕСКИЙ СОСТАВ И КАЧЕСТВО МЯСА СВИНЕЙ

Горлов И.Ф., Раджабов Р.Г., Гак Ю.М.

Поволжский НИИ производства и переработки мясомолочной продукции ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация: В статье рассматриваются вопросы повышения качества продукции свиноводства за счет оптимизации рационов подсвинков с использованием кормовых добавок. Целью работы являлось изучение влияния рыбной муки (5,5 % от сухого вещества) и кормовых дрожжей (6 % от сухого вещества) на химический состав, аминокислотный профиль и показатели качества мяса свиней крупной белой породы. Проведено сравнение трех групп животных по 10 голов в каждой с использованием контрольного убоя и Контрольная лабораторных исследований. группа получала основной соответствующий нормам ВИЖ. Животные второй группы дополнительно получали рыбную муку в количестве 5,5 % от сухого вещества корма, а третьей группы — кормовые дрожжи в количестве 6 % от сухого вещества корма. Результаты показали, что содержание сырого протеина увеличилось на 2,52 % (P < 0.01) при применении кормовых дрожжей, а сумма незаменимых аминокислот возросла на $18.7\,$ г/кг (P<0.001) при использовании рыбной муки. Биологическая ценность белка (PDCAAS) достигла 67,1 % во второй группе и 66,3 % в третьей группе. Исследования показывают, что использование рыбной муки и кормовых дрожжей позволяет существенно улучшить качество мяса, что имеет важное значение для практического применения в промышленном свиноводстве.

Ключевые слова. Крупная белая порода, рыбная мука, кормовые дрожжи, химический состав мяса, аминокислотный профиль, биологическая ценность белка.

УДК 636.2.34

ВЫРАЩИВАНИЕ РЕМОНТНЫХ ТЕЛОК ГОЛШТИНСКОЙ ПОРОДЫ

Каратунов В.А., Кобыляцкий П.С., Каратунова Д.А.

ФГБОУ ВО «Донской государственный аграрный университет»

ФГБОУ ВО «Кубанский государственный аграрный университет имени И.Т. Трубилина»

Аннотация: В приведенных исследовательских материалах отражены результаты работы по выращиванию голштинского ремонтного молодняка от рождения до 6-месячного возраста в НПХ «Кореновское» Краснодарского края. Основными направлениями данных исследований были: изучить рост и развитие ремонтных телок, изучить физиологические и гематологические показатели, а также определить экономическую эффективность выращивания поголовья. Телки опытной группы в сравнении с контрольной в течении молочного периода выпаивались простоквашей, полученной путем введения маточного раствора муравьиной кислоты в цельное молоко. Использование кисломолочного продукта простокваши в период выпаивания ремонтных телок позволило повысить приросты живой массы и благоприятно повлияло на здоровье животных. Таким образом разработанная технология выращивания ремонтного поголовья с помощью выпойки молока подкисленного муравьиной кислотой для его сквашивания, позволяет обеспечить среднесуточные приросты опытным животным на уровне 900 г в сутки, в 6-месячном возрасте такие животные достигают массы 200 кг, что в среднем на 10-15 кг больше чем у животных вырашиваемых без выпойки простокваши.

Ключевые слова: телки голштинской породы, выращивание крупного рогатого скота, рост и развитие крупного рогатого скота, простокваша в кормлении животных, цельное молоко, физиологические и гематологические показатели скота.

УДК 636.2.34

ИСПОЛЬЗОВАНИЕ КОРОВ ГОЛШТИНСКОЙ ПОРОДЫ В УСЛОВИЯХ МОЛОЧНОТОВАРНОГО КОМПЛЕКСА УОХ «КРАСНОДАРСКОЕ»

Каратунов В.А., Кобыляцкий П.С., Кирпенко А.М.

ФГБОУ ВО «Донской государственный аграрный университет»

ФГБОУ ВО «Кубанский государственный аграрный университет имени И.Т. Трубилина»

Аннотация: В приведенных исследовательских материалах отражены результаты работы по изучению влияние кормовых добавок Био Токс, Мегабуст Румен и Премикса П60 на количественные и качественные показатели молока голитинских коров. В результате использования в составе рационов кормовых добавок животные опытной группы имели значительно более высокие удои и превосходили аналогов по этому показателю на 10%. Превосходство было установлено и по содержанию молочного жира на 4,11% и белка на 2,48%. Органолептические показатели молока были в норме в контрольной и опытной группах. Кормовые добавки не изменяли цвет, запах и консистенцию молока. Прибыль у животных опытной группы составила 169024,41 руб., у животных контрольной группы была значительно ниже — 148691,92 руб. Закономерно уровень рентабельности производства молока был выше в опытной группе на 10%. Для повышения количественных и качественных показателей молока лактирующим голитинским коровам в хозяйстве целесообразно и экономически выгодным вводить в рацион кормовые добавки Био Токс в количестве — 25 г/гол./сут., Мегабуст Румен — 70 г/гол./сут., Премикс П60 — 60 г/гол./сут.

Ключевые слова: коровы голштинской породы, молочная продуктивность голштинских коров, физико-химические показатели молока, цельное молоко, удои молока, физиологические и гематологические показатели скота, рентабельность производства молока.

УДК 636.03

ВЛИЯНИЕ ФЕРМЕНТНЫХ ДОБАВОК НА КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ ЯИЦ И МЯСНУЮ ПРОДУКТИВНОСТЬ ПЕРЕПЕЛОВ

Дегтярь А.С., Нурашев Э.Р., Левандовская А.В.

ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация: Целью работы является изучение эффективности использования ферментных кормовых добавок Фекорд 2004-С и Фитазим-С ООО «БелАгроФермент» в рационах перепелов. В состав Фекорд 2004-С входят ксиланаза, β-глюканаза, глюкоамилаза, а в состав Фитазим-С – фитаза. Масса белка в 1 опытной группе, где применялся ферментный препарат Фекорд 2004-С была выше, чем в контроле на 2,09 г или 35,9%, а во 2 опытной группе, где использовали препарат Фитазим-С на 0,92 г или 15,8% соответственно. По массе желтка преимущество имели несушки из 1 опытной группы, где она составила 5,3,6 г. В контрольной группе масса желтка была меньше по сравнению с 1 опытной на 0,98 г или 22,4%. Масса желтка во 2 опытной группе составила 4,77 г, что на 0,39 г или 8,9% больше, чем в контроле. Использование ферментных препаратов оказало влияние и на массу скорлупы. Наименьшей она оказалась в 1 опытной группе – 1,05 г. Во 2 опытной и контрольной масса скорлупы составила 1,64 и 1,57 г. По результатам контрольного убоя установлено, что при введении в состав комбикорма ферментных добавок Фекорд 2004-С и Фитазим-С в количестве 100 грамм на тонну петушки имели убойные качества лучше, чем их аналоги из контрольной группы. По предубойной живой массе петушки 1 опытной группы превосходили контроль на 20г или 11,6%. Петушки 2 опытной группы превышали данный показатель у контроля на 13 г или 7,5%.

Ключевые слова: перепела, ферментный препарат, мясная продуктивность, яичная продуктивность.

УДК 636.92

ПРОДУКТИВНЫЕ КАЧЕСТВА КРОЛИКОВ ПРИ ИСПОЛЬЗОВАНИИ ПРОБИОТИЧЕСКОЙ ДОБАВКИ «ОЛИН»

Семенченко С.В., Алексанян А.Г.

ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация. В статье рассматриваются вопросы использования пробиотической кормовой добавки «Олин» разной концентрации в комбикормах для кроликов. Целью работы являлся анализ продуктивных качества кроликов породы Советская шиншила при использовании в комбикормах пробиотической добавки «Олин» в условиях крестьянско=фермерского хозяйства «Галдин С.Н.» Красносулинского района Ростовской области. Установлено, пробиотическая добавка «Олин в разной дозировке:- 50, 75 и 35 мг/кг живой массы оказывала положительное влияние на динамику живой массы, среднесуточные приросты, сохранность и мясную продуктивность кроликов. По окончании выращивания живая масса опытных групп превосходила контроль на 12,76; 17,08 и 17,32%, среднесуточные приросты увеличились на 21,12; 27,69 и 28,04%, сохранность на 4,8-6,7%, убойная масса на 11,22; 14,31 и 15,48%, убойный выход на 0,85; 1,76 и 2,21%, масса парной тушки на 13,05; 16,16 и 17,42%, индекс мясности в опытных группах превышает контрольную на 0,77; 1,11 и 1,46. В 1,2 и 3 опытных группах показатели развития внутренних органов были выше по сравнению с контрольной — легкие с трахеей на -6,38; 16,97; 25,41%, сердце на -2,06; 11,31; 17,52%, печень на -6.82; 12,02; 17,12%, почки на -3.79; 1,09; 5,55%, желудок без содержимого на -5,0; 17,97 и 21,37%. Однако наибольшее влияние на рост развитие и мясную продуктивность кроликов оказала концентрация кормовой добавки 35 мг/кг живой массы, которая по сравнению с концентрациями 50 и 75 мг/кг живой массы повысила вышеуказанные показатели соответственно на 5,22%, 28,04%, 4,8%, 2,21% и 2,57%.

Ключевые слова: кролики, порода, живая масса, прирост, сохранность, масса туши, убойный выход, внутренние органы.

УДК 636.32/38

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПРОДУКТИВНЫХ КАЧЕСТВ СКОТА КАЛМЫЦКОЙ ПОРОДЫ РАЗНЫХ ЛИНИЙ

Семенченко С.В., Ежова Е.Н.

ФГБОУ ВО «Донской государственный аграрный университет»

Аннотация. В процессе исследований была проведена сравнительная оценка крупного рогатого скота калмыцкой породы разной линейной принадлежности (Моряка 12054 и Манежа 7113). Цель работы – провести сопоставимый анализ продуктивных и мясных качеств калмыцкого скота разной линейной принадлежности в условиях ООО «Солнечное» Орловского района Ростовской области. Установлено, что в суточном возрасте бычки по живой массе не различались. В последующем, проявились некоторые различия в динамике живой массы. В 8-ми месячном возрасте проявилась разница в 2,75%, в 14-ти месяцев — 6,67%, в 18-ть месяцев -5,80% с превосходством 2 группы. Логична и динамика среднесуточных приростов во 2 группе, с разницей по возрастам -2,99; 13,06; 3,04 и 6,03%. Установлено, что с 8-и месячного возраста и до конца выращивания в 18 месяцев, отличительной особенностью бычков 2 группы являлась в большую сторону разница по всем промерам. Наибольшее преобладание наблюдалось по высоте в холке – 2,63 и 0,88%; обхвату груди за лопатками -1,34 и 2,76%; высоте в крестце -1,54 и 1,08%. Подобает упомянуть, что бычки 2 группы характеризуются массивными, хорошо выраженными мясными формами. По индексам телосложения бычки 2 группы превалировали над бычками 1 группы во все периоды выращивания (8-18 месяцев). Расхождение по индексу сбитости, грудному и массивности составило в 8,14 и 18 месяцев соответственно - 1,34; 1,10; 2,43; 0,62; 2,65; 2,86; 0,84; 0,95 и 3,07%. Исследования продемонстрировали, что по промерам и индексам телосложения бычки 2 группы доминировали над бычками 1 группы по своему росту и развитию. К концу выращивания в 18 месяцев, контрольный убой показал, что бычки подопытных групп имели высшую категорию упитанности и высокую мясную продуктивность. Контрольный убой выявил, что туши бычков 2 группы наиболее тяжеловесны. По убойной массе и выходу массы туши разница составила – 21,03 и 7,12%. По выходу внутреннего жира-сырцы отличие было на уровне 20%. Убойный выход также дисконтировал и составил 1,3%. По выходу шкур различие было равно – 8,29%. Анализ полученных данных показал, что по выходу полутуш 2 группа существенно преобладала 1 группу на 7,09%. Соответственно и по выходу мякоти и жира перевешивали на 7,42 и 28,12%. При этом, во 2 группе отмечен более низкий выход костей и сухожилий в сравнении c 1 группой – 0,02 и 0,01%. Индекс мясности, который является одним из значимых показателей туши на 0.1. продемонстрировало выше предпочтительный паритет мякоти и костей. во 2 группе подопытных бычков.

Ключевые слова. Порода скота, бычки, динамика живой массы, среднесуточный прирост, промеры, индексы телосложения, убойная массма, масса туши, убойный выход.

ABSTRACTS

4.1.1 GENERAL AGRICULTURE AND CROP PRODUCTION

UDC 633.11:631.524.7:631.582

THE EFFECT OF FOLIAR APPLICATION WITH RELICT R ON THE YIELD AND QUALITY OF WINTER WHEAT

Kirin A.V., Zelenskaya G.M., Marchenko D.M.

Don State Agrarian University

Don Agricultural Research Center

Abstract: The results of studying the effect of pre-sowing seed treatment and foliar application on the yield and quality of grain in the Volny Don variety of winter wheat in the southern zone of the

Rostov Region, using the Relikt P organo-mineral fertilizer, have been presented. The correlation between the yield of winter wheat and the elements of its structure has been established. The use of foliar dressing on winter wheat crops led to an increase in their yield in all experimental variants. On average, the yield increase was between 0.18 and 0.68 t/ha after peas and between 0.09 and 0.40 t/ha after sunflowers. The most effective peas in terms of their predecessor were options with pre-sowing treatment and leaf feeding on crops in the fall, during the period of spring tillering and stalk-shooting (C + O + B + B) and on options in the paniculation phase (C + O + B + B + K), the increase in yield compared to the control was 0.68 and 0.60 t/ha. The yield of winter wheat for the pea precursor was mainly due to the mass of grain in the ear (r = 0.97) and the number of grains in the ear (r = 0.85), after sunflower the yield depended on the mass of 1000 pieces (r = 0.65) and the mass of grain from the ear (r = 0.84). Leaf dressing with organo-mineral fertilizer Relikt R on winter wheat crops increased grain quality. In the control variant, the protein content in the grain of Volny Don winter wheat after the predecessor pea was 13.2%, while in the crops with Relikt R, the protein content increased from 13.4% to 14.1%, with the highest value in the variant with five applications. After sunflower, the protein content in winter wheat grain varied from 11.8% (control) to 12.8% in the experimental variants. In the grain of winter wheat, the studied experiments with foliar treatments, grown after sunflower, the gluten content was lower than after peas. In these variants, the gluten content in the grain varied from 23.7% in the C+O variant to 25.4% in the C+O+B+B+K variant. In the variants after peas, the gluten content in wheat grain was between 25.4% and 27.1%.

Keywords: winter wheat, foliar feeding, yield, protein content, gluten, kernel hardness, grain nature, correlation.

UDC 635.7: 631.52

THE IMPORTANCE OF NON-ROOT TREATMENTS WITH GROWTH STIMULATORS IN THE INCREASE OF THE ABOVEGROUND PART OF SEEDLINGS AND IN OBTAINING HIGH YIELDS OF TOMATO HYBRIDS

Avdeenko S.S., Avdeenko A.P.

Don State Agrarian University

Abstract: The article provides a detailed analysis of the effects of growth stimulator treatments of biological nature on the development parameters of seedlings of the open-field tomato hybrids Gospodar and Donskoy, as well as the average fruit weight and indicators of early and total yield. A positive influence of the applied biostimulants on the height of seedlings of the Gospodar and Donskoy hybrids was established, with minimal and statistically unconfirmed differences between them. The action of the preparations can be practically divided into 2 groups, each including 5 preparations. The first group includes the preparations: Baikal EM-1, Biosil, Obereg, Epin-extra, Albite, whose seedling height reaches 26.0 cm, with a leaf area of 132.4 cm². The second group has plant heights ranging from 26.1 to 27.0 cm, with a maximum leaf area not exceeding 155 cm², and it includes the preparations: Potassium Humate, Vigor Forte, Phosphatovit, Isabion, and Extrasol. The growth stimulants used for foliar treatments contribute to an increase in the average fruit mass, with a greater effect observed with the Phosphatovit and Izabion preparations for both hybrids; however, the fruit mass of the Donskoy hybrid is higher by 15-17 g with these options. For both hybrids, the strongest effect in increasing yield was shown by the potassium humate, Vigor Forte, Phosphatovit, Izabion, and Extrasol preparations, in the order of increasing effect. Although the Extrasol preparation stood out for both hybrids as the most productive, the difference from Izabion and Phosphatovit is not supported by statistical analysis. However, there are certain specifics. First, the plants' response depends not only on the applied preparations but also on the climatic conditions of the year – for example, 2025 was less productive compared to 2024.

Keywords: growth stimulants, leaf area, foliar treatments, hybrid, tomato, yield.

4.1.3 AGROCHEMISTRY, AGRICULTURAL SCIENCE, PLANT PROTECTION AND QUARANTINE

UDC 633.63:631.5

EFFICACY OF HERBICIDES ON SUGAR BEET CROPS WITH MIXED TYPE OF CLOGGING

Fetyukhin I.V., Abramova E.P., Vintovkin V.M.

Don State Agrarian University

Abstract: The use of modern means of beet growing chemicalization, taking into account the species diversity of weeds in agrophytocenoses, is a significant reserve in increasing the potential productivity of sugar beet. The article presents the results of studies on the biological and agroeconomic efficiency of using herbicides and their tank mixtures on sugar beet crops with a mixed type of weed infestation. In experiments according to conventional methods, the structure of the weed component in sugar beet crops was studied; biological efficacy of using post-emergence herbicides and their tank mixtures on sugar beet crops was established; field germination, plant density and average mass of root crops were determined; parameters of productivity and quality of sugar beet roots were estimated; economic and bioenergetic assessment of application efficiency of post-emergence herbicides on sugar beet crops was given. Based on the studies conducted, it has been found that against the mixed type of weed infestation, high efficiency is provided by the postemergence use of herbicides in three waves of weed infestation of crops according to the scheme: 1st treatment with Betaren Super with a consumption rate of 1.0 l/ha; 2nd Mitron treatment with a rate of consumption of 2 l/ha in the phase of weed cotyledons in the phase of 2 real leaves of the crops; 3rd treatment Arbiter rate of 0.03 l/ha in phase 4 of real crop leaves + surfactant ETD-90 rate of 0.2 l/ha.

Key words: sugar beets, weeds, herbicides, root crop yields, sugar harvesting.

UDC 632:633.854.78

RESULTS OF THE STUDY OF THE EFFICIENCY OF USING MODERN PLANT PROTECTION MEANS IN SUNFLOWER CULTIVATION IN THE AZOV ZONE OF ROSTOV REGION

Poyda V.B., Zbrailov M.A., Falynskov E.M.

Don State Agrarian University

Abstract: Studies have shown that the use of plant growth regulators with protective, growth-stimulating and growth-regulating functions in sunflower cultivation in the Azov region of the Rostov region gives positive results. It contributed to the suppression of the development of alternariasis, caused a decrease in plant height, an increase in root mass, the mass of raw leaves and the diameter of the basket. On average, over two years of research, the maximum yield of sunflower oilseeds — 3.26 t/ha, 3.22 t/ha and 3.22 t/ha was formed in variants using the preparations Architect Prime (1.0 kg/ha), Architect Prime (0.8 kg/ha) and Architect + ammonium sulfate Turbo (1.5 + 0.8 kg/ha), introduced into the sunflower development phase of the 2nd internode (GS 32 on the BBCN scale). The gains from the control level were 0.45, 0.41, and 0.41 t/ha, respectively.

Key words: sunflower, plant growth regulators, disease susceptibility, biometric indicators, oilseed yield.

4.2.5 ANIMAL BREEDING, BREEDING, GENETICS AND BIOTECHNOLOGY

UDC 636.051

ON THE CREATION OF THE BREEDING REPRODUCER LLC «HEREFORD» FOR BREEDING HEREFORD BREED CATTLE

Munkuev V.Ch., Kayukova S.N., Vikulina N.A.,

Degtyar A.S., Khoroshailo T.A., Pluzhnikov G.L.

Trans-Baikal agrarian institute – branch of the federal state budgetary educational institution of higher education Irkutsk State Agrarian University named after A.A. Ezhevsky

Don State Agrarian University

Kuban State Agrarian University named after I.T. Trubilin

Abstract: The paper presents an analysis of the breeding characteristics of Hereford cattle in the conditions of the created breeding farm of Hereford LLC, located on the territory of the Transbaikal Agrarian Institute - a branch of the Irkutsk State Agrarian University named after A. A. Ezhevsky. The study period covers four years (from 2019 to 2022) and includes a comprehensive assessment of the breeding and productive characteristics of the entire herd. To achieve an objective assessment, a wide range of methods was used, including a comprehensive assessment of animals to assess their exterior characteristics, modern methods of immunogenetic testing, as well as the capabilities of the information and analytical system SELEKS, which provides a powerful tool for processing large amount of animal data. Particular attention is paid to the analysis of the influence of specific conditions of keeping and feeding animals in the sharply continental climate of Eastern Transbaikalia, characterized by harsh winters and dry summers, with large temperature fluctuations. The features of feeding rations, methods of providing animals with the necessary shelter in winter, and the influence of climatic factors on the productivity and health of livestock were analyzed. The materials of this article represent valuable practical material that can be successfully used by specialists in the field of animal husbandry for further optimization of breeding work, increasing the efficiency of breeding Hereford cattle not only in the Trans-Baikal Territory, but also in other regions with similar climatic and economic conditions, contributing to the development of beef cattle breeding and increasing its economic efficiency.

Key words: beef cattle breeding, Hereford breed, breeding farm, breeding, cows, herd.

4.2.4 PRIVATE ANIMAL HUSBANDRY, FEEDING, TECHNOLOGIES OF FEED PREPARATION AND PRODUCTION OF ANIMAL PRODUCTS

UDC 631.95:636.085:636.087.2

CONFIGURATION OF NUTRITION PARAMETERS WITH DRY SOLUBLE FEED VEGETABLE MIXTURE AFTER MICROBIOLOGICAL CONVERSION

Kozlov E.E., Mironova O.A.

Don State Agrarian University

Peoples' Friendship University of Russia named after Patrice Lumumba

All-Russian Plant Quarantine Center

Abstract. The need to reduce the cost of production is also relevant in socially significant areas. Despite government subsidies and comprehensive study, the dairy industry of cattle breeding in terms of economic activity belongs to the venture category of investments and tends to maintain its status. The need for high-tech support for this area is largely due to the versatility of the living biologicals, in particular the breed potential of cattle, on which the entire production process is based. Against this background, compared with the stimulation of price competitiveness of output raw materials, reducing the cost of basic resources requires continuous updating, taking into account the local capabilities of the enterprise and the market situation. Reducing commercial milk in the diet of young animals brings high profitability, but the admissibility of such techniques is possible only through the use of expensive milk replacers. The developed experimental dry soluble plant mixture showed promising results when used specifically in the calf feeding scheme. The origin of its component composition does not allow replacing the natural secret and its artificial analogues at all age stages. An effective solution was microbiological treatment of the substrate at the production stage, which in turn is an environmentally friendly method that excludes the factors of negative influence of synthetic components of industrial origin. Changes in the configuration of energy parameters reached 23%, which is determined by the value of 1.43 EFU of fermented

samples, with 1.5 EFU in the whole substitute accepted for comparison. The result of bioconversion in relation to native samples prevailed by the growth of the average concentration of crude protein by 79 g/kg (7.9%), mono- and disaccharides by 65 g/kg (6.5%), crude fat - 12 g/kg (1.2%), starch – 87 g/kg (8.7%); destruction of fiber by 121 g/kg (12.1%). In addition, a positive transformation of the level of vitamins B and E from 115% to 170%, nine essential amino acids by an average of 22.5% was recorded.

Keywords. Microbiological fermentation, Lesnov's starter, nutrient parameters, whole milk substitute, protein-energy malnutrition.

UDC 636.084.1:636.085.64

MULTIFACTORIAL TECHNIQUE FOR PREVENTING THE INCREASE IN THE LEVEL OF NUTRITIONAL DISORDERS OF FEEDING ETIOLOGY AMONG YOUNG DAIRY CATTLE

Kozlov E.E., Mironova O.A.

Don State Agrarian University

Peoples' Friendship University of Russia named after Patrice Lumumba

All-Russian Plant Quarantine Center

Abstract: Each taxonomic group of animals has predominantly species-specific diseases. Despite long-term selective transformations and adaptive capabilities at the level of genetic engineering, highly productive agricultural individuals are no exception. To a large extent, the nosological structure in its non-infectious part is due to the morphofunctional nature of the formation of the organism. In ruminants, the physiological specificity of the functioning of the digestive system is determined by a number of production-useful features and characteristics. The absence of essential amino acids and the ability to synthesize animal protein with a herbivorous type of nutrition are associated with colossal weight gain, growth rate and productivity. But a negative factor, including for the cattle breeding industry as a whole, is the ontogenesis of the formation of a multi-chamber stomach, which at birth in young animals has structural and functional parameters characteristic of monogastric animals. The technique of using cattle, including reproduction, is very multifaceted and requires a comprehensive qualified approach. However, even with a targeted professional position, the above-mentioned aspects do not allow avoiding the defeat of the calf population by one of the most widespread alimentary disorders - dyspepsia. In the experiment conducted on young animals, it was possible to establish the criteria for the significance of heat treatment of collected milk before feeding and the preventive use of an electrolyte supplement in critical periods characterized by peak rates of registration of cases of disorders of feed etiology. The results obtained reflect the high validity of the applied multifactorial method of prevention. The experimental livestock showed an increase in resistance to the occurrence and development of a simple form of dyspepsia up to 76%, there were no severe forms of the course and relapses. In terms of preventing pathogenesis, pasteurization made it possible to reduce the level of bacterial contamination of the milk fed by 53.7%, escalation of the severity of the course in registered cases was prevented by an electrolyte feed mixture, while the reduction in the deviation in the blood serum of Na^+ salts was up to 5.7%, K^+ up to 4.4%.

Keywords. Preventive feeding, dyspepsia, calves, prevention of alimentary disorders, water-salt balance, pasteurization, bacterial contamination, opportunistic microflora.

UDC 636.087.7:636.033

COMPARATIVE ASSESSMENT OF THE EFFECT OF PROTEIN ADDITIVES ON THE CHEMICAL COMPOSITION AND QUALITY OF PIG MEAT

Gorlov I.F., Radzhabov R.G, Gak Yu.M.

Volga Research Institute of Production and Processing of Meat and Dairy Products

Don State Agrarian University

Abstract. The article discusses the issues of improving the quality of pig products by optimizing the diets of piglets using feed additives. The aim of the work was to study the effect of fish meal (5.5%)

of dry matter) and feed yeast (6% of dry matter) on the chemical composition, amino acid profile and quality indicators of large white breed pig meat. A comparison of three groups of animals with 10 heads each was carried out using control slaughter and laboratory tests. The control group received a basic diet that met the standards of All-Russian Institute of Livestock Breeding. The animals of the second group additionally received fish meal in the amount of 5.5% of the dry matter of the feed, and the third group received feed yeast in the amount of 6% of the dry matter of the feed. The results showed that the crude protein content increased by 2.52% (P < 0.01) when using feed yeast, and the amount of essential amino acids increased by 18.7 g/kg (P < 0.001) when using fish meal. The biological value of the protein (PDCAAS) reached 67.1% in the second group and 66.3% in the third group. Research shows that the use of fishmeal and feed yeast can significantly improve the quality of meat, which is important for practical use in industrial pork.

Keywords. Large white breed, fish meal, feed yeast, chemical composition of meat, amino acid profile, biological value of protein.

UDC 636.2.34

RAISING HOLSTEIN REPAIR HEIFERS

Karatunov V.A., Kobylyatsky P.S., Karatunova D.A.

I.T. Trubilin Kuban State Agrarian University

Don State Agrarian University

Abstract: The above research materials reflect the results of the work on the cultivation of Holstein repair young animals from birth to 6 months of age in the NPH "Korenovskoye" of the Krasnodar Territory. The main directions of these studies were: to study the growth and development of repair heifers, to study the physiological and hematological parameters, as well as to determine the economic efficiency of raising livestock. The heifers of the experimental group, in comparison with the control group, were watered during the dairy period with curdled milk obtained by introducing a royal jelly solution of formic acid into whole milk. The use of fermented milk product curdled milk during the milking of repair heifers allowed for increased body weight gains and had a beneficial effect on animal health. Thus, the developed technology for growing repair livestock by drinking milk acidified with formic acid for fermentation allows for average daily gains for experimental animals at the level of 900 g per day, at the age of 6 months such animals reach a weight of 200 kg, which is on average 10-15 kg more than in animals raised without drinking yogurt.

Keywords: holstein heifers, cattle breeding, growth and development of cattle, curdled milk in animal feeding, whole milk, physiological and hematological parameters of cattle.

UDC 636.2.34

THE USE OF HOLSTEIN COWS IN THE CONDITIONS OF THE KRASNODARSKOYE DAIRY COMPLEX

Karatunov V.A., Kobylyatsky P.S., Kirpenko A.M.

I.T. Trubilin Kuban State Agrarian University

Don State Agrarian University

Abstract: The above research materials reflect the results of the work on the study of the effect of feed additives Bio Tox, Megabust Rumen and Premix P60 on the quantitative and qualitative indicators of milk from Holstein cows. As a result of using feed additives in the diets, the animals of the experimental group had significantly higher milk yields and exceeded their counterparts in this indicator by 10%. The superiority was also found in the content of milk fat by 4.11% and protein by 2.48%. The organoleptic parameters of milk were normal in the control and experimental groups. The feed additives did not change the color, odor, or consistency of the milk. The profit of the experimental group animals was 169024.41 rubles, in the animals of the control group it was significantly lower – 14,8691.92 rubles. Naturally, the profitability of milk yield was 10% higher in the experimental group. To increase the quantitative and qualitative indicators of milk for lactating Holstein cows on the farm, it is advisable and economically advantageous to introduce Bio Tox feed additives in the amount of 25 g/head/day, Megabust Rumen – 70 g/head/day, Premix P60 – 60

g/head/day.

Keywords: Holstein cows, milk yield of Holstein cows, physico-chemical parameters of milk, whole milk, milk yield, physiological and hematological parameters of livestock, profitability of milk yield.

UDC 636.03

THE EFFECT OF ENZYME ADDITIVES ON EGG QUALITY AND MEAT PRODUCTIVITY IN QUAIL

Degtyar A.S., Nurashev E.R., Levandovskaya A.V.

Don State Agrarian University

Abstract: The aim of this study is to evaluate the effectiveness of using the enzyme feed additives Fekord 2004-S and Fitazim-S (BelAgroFerment LLC) in quail diets. Fekord 2004-S contains xylanase, β -glucanase, and glucoamylase, while Fitazim-S contains phytase. The protein mass in the 1st experimental group, where the enzyme preparation Fekord 2004-S was used, was higher than in the control by 2.09 g or 35.9%, and in the 2nd experimental group, where the preparation Fitazim-S was used, by 0.92 g or 15.8%, respectively. In terms of yolk mass, layers from the 1st experimental group had an advantage, where it was 5.3.6 g. In the control group, the yolk mass was less than in the 1st experimental group by 0.98 g or 22.4%. The yolk mass in the 2nd experimental group was 4.77 g, which is 0.39 g or 8.9% more than in the control. The use of enzyme preparations also affected the shell mass. The lowest eggshell weight was found in the first experimental group -1.05g. In the second experimental and control groups, eggshell weights were 1.64 and 1.57 g, respectively. Results of the control slaughter showed that when the enzyme supplements Fekord 2004-S and Fitazim-S were added to the feed at a rate of 100 grams per ton, the cockerels had better slaughter qualities than their counterparts in the control group. In terms of pre-slaughter live weight, the cockerels in the first experimental group exceeded the control group by 20 g, or 11.6%. Cockerels in the second experimental group exceeded the control group by 13 g, or 7.5%.

Keywords: quails, enzyme supplement, meat production, egg production.

UDC 636.92

PRODUCTIVE QUALITIES OF RABBITS WHEN USED PROBIOTIC SUPPLEMENT "OLIN"

Semenchenko S.V., Aleksanyan A.G.

Don State Agrarian University

Annotation. The article discusses the use of probiotic feed additives "Olin" of different concentrations in compound feeds for rabbits. The purpose of the work was to analyze the productive qualities of Soviet Chinchilla rabbits when using the probiotic additive "Olin" in compound feeds in the conditions of the Galdin S.N. peasant farm in the Krasnosulinsky district of the Rostov region. It has been established that the probiotic supplement "Olin in different dosages:-50, 75 and 35 mg/kg of live weight had a positive effect on the dynamics of live weight, average daily gains, safety and meat productivity of rabbits. At the end of rearing, the live weight of the experimental groups exceeded the control by 12.76; 17.08 and 17.32%, average daily gains increased by 21.12; 27.69 and 28.04%, safety by 4.8-6.7%, slaughter weight by 11.22; 14.31 and 15.48%, slaughter yield by 0.85; 1.76 and 2.21%, weight fresh carcasses by 13.05, 16.16 and 17.42%, the meat index in the experimental groups exceeds the control by 0.77; 1,11 and 1,46. In the 1,2 and 3 experimental groups, the indicators of the development of internal organs were higher than in the control group - lungs with trachea by 6.38; 16.97; 25.41%, heart by 2.06; 11.31; 17.52%, liver by 6.82; 12.02; 17.12%, kidneys by 3.79; 1.09; 5.55%, stomach without contents at 5.0; 17.97 and 21.37%. However, the greatest impact on the growth, development and meat productivity of rabbits was exerted by the concentration of a feed additive of 35 mg/kg live weight, which, compared with concentrations of 50 and 75 mg/kg live weight, increased the above indicators, respectively, by 5,22%, 28,04%, 4,8%, 2,21% and 2.57%.

Keywords: rabbits, breed, live weight, gain, preservation, body weight, slaughter yield, internal organs.

UDC 636.32/38

COMPARATIVE CHARACTERISTICS OF PRODUCTIVE QUALITIES OF KALMYK CATTLE OF DIFFERENT LINES

Semenchenko S.V., Yezhova E.N.

Don State Agrarian University

Annotation: In the course of the research, a comparative assessment of Kalmyk cattle of different lineages (Seaman 12054 and Man 7113) was carried out. The purpose of the work is to conduct a comparable analysis of the productive and meat qualities of Kalmyk cattle of different lineages in the conditions of Solnechnoye LLC in the Oryol district of the Rostov region. It has been found that the bulls did not differ in body weight at the age of one day. Subsequently, there were some differences in the dynamics of body weight. At the age of 8 months, there was a difference of 2.75%, at 14 months - 6.67%, at 18 months - 5.80% with the superiority of the group 2. The dynamics of average annual gains in group 2 is also logical, with an age difference of 2.99%, 13.06%, 3.04%, and 6.03%. It has been found that from the age of 8 months to the end of rearing at 18 months, a distinctive feature of the group 2 calves was a large difference in all measurements. The greatest predominance was observed in height at the withers – 2.63 and 0.88%; chest circumference behind the shoulder blades – 1.34 and 2.76%; height at the sacrum – 1.54 and 1.08%. It should be mentioned that the bulls of the 2nd group are characterized by massive, well-defined meat forms. According to the body indices, the bulls of group 2 prevailed over the bulls of group 1 in all growing periods (8-18 months). The discrepancy in the index of bulkiness, thoracic and massiveness was 8.14 and 18 months, respectively. - 1,34; 1,10; 2,43; 0,62; 2,65; 2,86; 0,84; 0,95 and 3.07%. Studies have shown that in terms of body measurements and body indexes, the bulls of group 2 dominated the bulls of group 1 in terms of their height and development. By the end of rearing at 18 months, the control slaughter showed that the bulls of the experimental groups had the highest fatness category and high meat productivity. The control slaughter revealed that the carcasses of the bulls of group 2 are the heaviest. In terms of slaughter weight and carcass mass yield, the difference was 21.03% and 7.12%. In terms of the output of internal raw fat, the difference was at the level of 20%. The slaughter yield was also discounted and amounted to 1.3%. The difference in the output of skins was 8.29%. An analysis of the data obtained showed that in terms of half-carcass yield, group 2 significantly dominated group 1 by 7.09%. Accordingly, the yield of pulp and fat outweighed by 7.42% and 28.12%. At the same time, in group 2 there was a lower yield of bones and tendons compared to group 1-0.02 and 0.01%. The meat index, which is one of the significant qualitative indicators of carcasses, is 0.1 higher, which demonstrated the preferred parity of pulp and bones. in the 2nd group of experimental bulls.

Keywords: Cattle breed, calves, dynamics of live weight, average daily gain, measurements, body indexes, slaughter weight, carcass weight, slaughter yield.

ВЕСТНИК ДОНСКОГО ГОСУДАРСТВЕННОГО АГРАРНОГО УНИВЕРСИТЕТА

№ 3 (57), 2025

Адрес редакции, издателя, типографии: ФГБОУ ВО «Донской ГАУ», 346493, ул. Кривошлыкова 24, п. Персиановский, Октябрьский (с) район, Ростовская область e-mail: dgau-web@mail.ru Тел. 8(86360) 36-150

Подписано в печать 27.09.2025 г. Выход в свет 30.09.2025 г. Печать оперативная Усл. печат л. 10,5 Заказ №______ Тираж 100 экз.